y	(485)
oklet	2537

t

17

	214
Roll No.	
Roll No. Write the digits in words)	
Serial No. of OMR Answer Sheet	
Day and Date	/Signature of Invigilator

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, che
 it contains all the pages in correct sequence and that no pag
 Question Booklet bring it to the notice of the Superintende
 fresh Question Booklet.
 - Do not bring any loose paper, written or blank, inside the F without its envelope.
- A separate Answer Sheet is given. It should not be folded or not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sh
- On the front page of the Answer Sheet, write by pen you
 at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the
 Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

] उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं|

No. of Printed Pages: 28+2

No. of Questions/प्रश्नों की संख्य

Time/समय : 2 Hours/घण्टे

Note :

(335)

- Attempt as many questions as you can.
 One mark will be deducted for each inco awarded for each unattempted question
 - अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा आएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 - यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 1. Which of the following pigments occur in blue green algae?
 - [1] Fucoxanthin

(2) Violaxanthin

(3) Phycocyanin

(4) Phycoerythrin

(P.T.O.)

2.	A protein rich organism is		
	(1) Spirulina/Nostoc	(2) Chlamydomonas	
	(3) Spirogyra/Ulothrix	(4) Oedogonium	
3.	Oil is the reserve food in	i i	
	(1) Chlamydomonas	(2)	
	(3) Vaucheria	(4)	
4.	Carrageenin, a jelly-like substance,	is ob	d
	(1) Sargassum (2) Fucus	(3)	-
5.	Gulf weed is		
٠.		(0) France	
		(2) Fucus	
	(3) Sargassum	(4) Batrachospermum	
6.	Chlamydomonas shows		
	(1) isogamy	(2) anisogamy	
	(3) oogamy	(4) isogamy, anisogamy and oogam	ıy
7.	A ring of multiciliate zoogonidium is	found in	
		(3) Oedogonium (4) Chara	
(335)	2		

8.	In which one of the following gene	ra, sp	orangium contains capillitium?	
	(1) Absidia	(2)	Entomophthora	
	(3) Stemonites	(4)	Mortierella	
9.	Rice crop was destroyed by a funguin 1942-1943. It was due to	s whic	ch resulted in severe famine of E	Bengal
	(1) Penicillium	(2)	Helmint	
	(3) Rhizopus	(4)	Puccinic	
10.	VAM represents			
	(1) saprophytic fungi	(2)	symbiot	
	(3) saprophytic bacteria	(4)	symbiot	
11.	Which one of the following is used	l in m	aking of the bread?	
	(1) Saccharomyces cerevisiae	(2)	Saccharomyces ludwigii	
	(3) Saccharomyces actosporus	(4)	All of the above	
12.	White rust disease is caused by			
	(1) Ascobolus (2) Rhizopus	(3)	Albugo (4) Puccinia	
13.	The fungus without mycelium is		(4)	
	(1) Puccinia	(2)	Phytophthora	
	(3) Rhizopus	(4)	Saccharomyces	
35)		3	~ (P.T.O.)

(335)

14.	The respiratory pro	ocess of yeast is		-			
	(1) rarely anaerobi	c ·	(2)	anaerobic			
	(3) purely aerobic		(4)	both aerobic s	ınd	anaerobic	
15.	Exclusion of plant	diseases by legis	latio	n is known as		×.	
	(1) biological contr	ol	(2)	F			
	(3) disease resistar	nce	(4)	c			
16.	Juvenile state of M	foss is					121
	(I) protonema	(2) prothallus	(3)	c		i e	ive
17.	A sterile jacket are	ound gametangia	is a	feature of		e eg t	
	(1) algae	(2) bryophytes	(3)	lichens	(4)	fungi	
18.	Which one is true	moss?				·	
	(1) Bog moss	a a	(2)	Reindeer moss	ı		
	(3) Club moss		(4)	Irish moss			
19.	The protective devi	ce over the develo	pin	g sporophyte is	sho	oot-calyptra in	1
	(1) Frullania	(2) Anthoceros	(3)	Sphagnum	(4)	Pellia	
(335)		~ 4					

	(1) 4 neck canal cells, 1 venter canal cell and one oosphere
	(2) 4 neck canal cells, 2 venter canal cells and one oosphere
	(3) 4 neck canal cells, 1 venter canal cell and two oospheres
	(4) 6 neck canal cells, 2 venter canal cells (
21.	Alternation of generation in Polysiphonia is
	(1) haplobiontic and monophasic (2) hap
	(3) diplobiontic and diphasic (4) dipl
22.	Which one of the following is a gymnostomous moser
	(1) Funaria (2) Pogonatum (3) Sphagnum (4) Polytrichum
23.	Function of elaters and pseudoelaters is
	(1) conduction of sap (2) protection of spores
	(3) absorption of nutrients (4) spore dispersal
24.	If a sporangium develops from a group of cells it is called
	(1) Leptosporangiate (2) Eusporangiate
	(3) Heterosporangiate (4) None of these
35)	5 (P.T.O.

20. An archegonium of Riccia has

25.	Basal swollen part of ligule of Selaginella is					
	(1) Protonema		(2)	Hydathodes		
83	(3) Rhizopodium		(4)	Glossopodium		
26.	Total number of s	eries in Bentham	and	Hooker system	of	classification is
	(i) 19	(2) 21	(3)	24		
27.	Branched stamens	are found in				
	(1) Euphorbia	(2) Solanum	(3)	Parth		
28.	Bisporic type of er	mbryosac developn	nent	takes		
	(1) Allium	(2) Oenothera	(3)	Fritill	17/	a gree
29.	Floral buds are m	odified into tendri	l in			
	(1) Pisum	(2) Polygonum	(3)	Antigonon	(4)	Cucurbits
30.	Cycas ovule is					
	(1) anatropous		(2)	circinotropous	20	•
	(3) hemianatropou	18	(4)	orthotropous		B.
31.	Pinus wood is			5 E		
	(1) pycnoxylic	(2) manoxylic	(3)	porous	(4)	diploxylic
(335)		. 6				Š
			•	,		μ.
				영 *		

32.	'Shower of sulphur' occurs in				
	(1) Tectona forest	S	(2) Pine forests		
	(3) Ginkgo forests		(4) Juniperus fore	sts	
33.	Which gymnosper	m is medicinally in	nportant for treatm	ent of Asthma?	
	(1) Taxus	(2) Ephedra	(3) Gi		
34.	Pentoxylon was di	scovered from			
	(1) Western Ghat	8	(2) Ar		
ia D	(3) Rajmahal Hills	3	(4) Ra		
35.	Coconut fruit is a	example of			
	(1) Drupe	(2) Hesperidium	(3) Berry	(4) Lomentum	
36.	Parachute mechan	nism of fruit disper	sal is due to	2	
	(1) Thorn	(2) Pappus	(3) Bracts	(4) Tepals	
37.	Gynobasic style is	found in			
	(1) Solanum	(2) Ocimum	(3) Vinca	(4) Calotropis	
38.	Cortical vascular	bundles are found	in		
	(1) Bignonia	(2) Mirabilis	(3) Boerhaavia	(4) Nyctanthes	
335)		7		(P.T.O.,	

39.	Perisperm in seeds develops from	9 3	e
	(1) nucellus (2) funiculus	(3) hilum	(4) ovary wall
40.	Bicollateral vascular bundles are pre	sent in stem of	·
	(1) Cucurbitaceae	(2) Cycas	
	(3) Pinus	(4) Grai	
41.	Circinotropous ovules are found in		
	(1) Opuntia (2) Chenopodium	(3) Poly	
42.	Non-medullated stele consisting of phloem is known as	a centra	
	(1) Protostele (2) Soienostele	(3) Siphonostele	(4) Dictyostele
43.	Flowers are zygomorphic in		
	(1) Mussaenda (2) Ixora	(3) Hamelia	(4) Calotropis
44.	The term 'Operational Taxonomic Ur	nits' (OTU) is used	in
	(i) Hutchinson classification		
	(2) Chemotaxonomy		
	(3) Numerical taxonomy	ä	
	(4) Bentham and Hooker classification	on	
(335)	8	,	

y

45.	The 'Lignosae' is used in
	(1) Hutchinson classification
	(2) Chemotaxonomy
	(3) Bentham and Hooker classification
	(4) Numerical taxonomy
16 .	The process by which seedless fruits are produ
8	(1) Apomixis (2) Parther
	(3) Parthenogenesis (4) Polyem
7.	Wood is classified as porous if it contains
	(1) vessels (2) trachieds
	(3) companion cells (4) sclereids
8.	Plant parts used for extraction of opium from Papaver somniferum are
	(1) young seedlings (2) unripe capsules
	(3) mature leaves (4) ripened seeds
D,	Rubber is obtained from
	(1) cell sap (2) gum (3) resin (4) latex
5)	9 (P.T.O.)

50.	Find out the false statement with regard to family Asteraceae				
	(1) cypsela fruits	(2) hypogynous flowers			
	(3) inferior overy	(4) zygomorphic flowers			
51.	LC ₅₀ is commonly used as the test	of .			
	(1) chronic toxicity	(2) :			
	(3) margin of safety	(4)			
52.	Asiatic lions in the wild are found i	n			
	(1) Gir Forest National Park	(2)			
	(3) Kaziranga National Park	(4) Kanha National Park			
53.	Biomagnification is defined as				
¥	(1) the process of accumulation of chemicals in the organisms				
	(2) the increasing concentration of	chemicals at successive trophic levels			
	(3) accumulation of chemicals in certain species				
	(4) excessive accumulation of chem	icals in primary consumers			
54.	Which of the following is a first-ord	ler consumer?			
	(1) Dingo (2) Gaur	(3) Hyena (4) Dhole			
(335)	0			

61.	Photochemical smog is a mixture of				
	(1) nitrogen, air, oxygen, hydrocarbo	n			
	(2) nitrogen oxides, ozone, peroxy ac hydrocarbons	cetyl nitrate, particulates and unreacted			
	(3) peroxy acetyl nitrate, particulates, carbon dioxide, unreacted hydrocarbons				
	(4) air, oxygen, nitrogen, carbon di hydrocarbons	ioxide, peroxy acetyl nitrate, unreacted			
62.	Minimata and Itai-itai diseases are c	aused by			
	(1) mercury and cadmium	(2) iron and silicon			
	(3) lead and asbestos	(4) lead and chromium			
63.	Biodegradation of oil spills is carried	l by			
(9	(1) Pseudomonas denitrificans	(2) Methanomonas			
	(3) Pseudomonas putida	(4) Acetobacter acetogenum			
64.	The National Environment Engineerin	g Research Institute (NEERI) is situated at			
•	(1) Nainital (2) Durgapur	(3) Shimla (4) Nagpur			
65.	"Meeting the needs of the present without compromising the ability of future generation to meet their own needs" defines				
	(1) sustainable development	(2) conservation of biodiversity			
	(3) convention on biodiversity	(4) human resource development			
335)	12				
. 5					

66:	Identify the corr	ect combination :		
•••	(a) SO ₂	(i) Red-brown di	stal necrosis	
	(b) NO _x	2744.8 1257 25 vis 5s	ter-venial necrosis	
	(c) HF		per surface of leaves wit	h distal necrosis
	(d) Cl	(iv) Tip and man		
•	(e) Ethylene	(v) Needle-point	chlorotic dots with upper	surface flecks
	(f) O ₃	(vi) Abscission an	nd curling	
	(1) (a)-(ii); (b)-(i);	(c)-(iv); (d)-(iii); (e	e)-(vi); (f)-(v)	
	(2) (a)-(i); (b)-(ii);	(c)-(iv); (d)-(iii); (e	:)-(v); (f)-(vi)	
	(3) (a)-(i); (b)-(ii);	(c)-(iv); (d)-(iii); (e	e)-(vi); (f)-(v)	
	(4) (a)-(i); (b)-(iii)	; (c)-(iv); (d)-(vi); (e)-(ii); f-(v)	
67.	About 60% of th	e total greenhous	e forcing is caused	l by
	(1) CO ₂	(2) CH ₄	(3) CFC	(4) ozone
68.	The interaction t	hat benefits both	the participating s	species is known as
60	(1) predation	(2) parasitism	(3) mutualism	(4) commensalism
69.	In a tree ecosyst	em, pyramid of n	umber is	
	(1) upright		(2) intermediate	type
ii.	(3) inverted	Ħ	(4) upright and	inverted
70.	Which of the foll	owing species is	not an indicator of	eutrophic condition?
	(1) Anabaena flo	s-aquae	(2) Microcystis	aeruginosa
	(3) Aphanizomen	on flos-aquae	(4) Hydrilla	
(335)			13	(P.T.O.

71.	Water bloom is associated with			
	(1) biomagnification	(2)	eutrophication	
	(3) biofortification	(4)	acid rain	
72.	Average salinity of ocean is		•	72
	(1) 3·5 p.p.t. (2) 3·5%	(3)	35% (4) 35 p.p.m.	
7 3.	The calorific value of bituminous co	al is	1	
	(1) 11000-14000	(2)	ç	
	(3) 8300-11000	(4)	5	
74.	Study of interaction among all the live	ving	OI	ty is
	(1) autecology (2) synecology	(3)	cynecology (4) autogeny	
75.	Vallisneria is a			
	(1) halophyte	(2)	hydrophyte	
	(3) xerophyte	(4)	mesophytic fern	
76.	The antibiotic rifampicin blocks		r.	
	(1) ATP production	(2)	DNA replication	
	(3) transcription	(4)	translation	
77 .	In an opern, promoter region binds	to		
	(1) repressor	(2)	inducer	
	(3) repressor and inducer both	(4)	RNA polymerase	
335)	14			

.

7.0.	During recuback	minoraon			
	(1) product of th	e pathway acts	on DNA to inhib	it enzyme synthesis	
	(2) product of the pathway	ne pathway inh	ibits the activity	of the first enzyme of	the
•	(3) product of the	pathway intera	cts with substrate	to inhibit enzyme activit	y
	(4) substrate of pathway	the pathway in	hibits the activity	of the first enzyme of	the
79.	The nitrogen-fixing	ng bacterium Be	eijerinckia is a		
	(1) facultative an	aerobe	(2) aerob		
	(3) anaerobe		(4) symb		
			D		
80.	In vitro how many	molecules of AT		8	
	(1) 6	(2) 8	(3) 16	(4) 24	
81.	Ferredoxin-depen	dent nitrate red	luctase is found	iņ .	
	(1) fungi		(2) all photo	synthetic organisms	
	(3) cyanobacteria	L	(4) eukaryot	es	
82.	How many electro		CONTRACTOR OF THE CONTRACTOR O	nitrate to ammonium and	l its
	(1) 4	(2) 10	(3) 12	(4) 6	
		• • • • • • • • • • • • • • • • • •	Community and the	-1	
83.	Uptake of sulfur			almost exclusively via	
	(1) SO ₄ ²⁻	(2) SO ₃ ²⁻	(3) S ²⁻	(4) GSH	
(335)	G .		15.	(P.:	r.o.)
	×			*	·

84.	The turnover time for ATP in a cell	is
	(1) 2-3 hours	(2) 12-24 hours
	(3) 30-60 min	(4) 10-45 seconds
85.	A reaction can occur spontaneously	only if
	(1) ΔG is positive	
	(2) ΔG is negative	*
	(3) AG is zero	Tr.
	(4) AG content of product is higher	than A
86.	Large K _m denotes for	
	(1) large dissociation constant	(2) small dissociation constant
	(3) large association constant	(4) high enzyme substrate affinity
87.	In which part of the enzyme substr	ate specificity resides?
	(1) Prosthetic part	(2) Apoenzyme part
	(3) Coenzyme part	(4) Organic part of the cofactor
88.	Fatty acid biosynthesis does not rec	quire
	(1) biotin (2) malonyl-CoA	(3) acetyl-CoA (4) NADH
335)	16	
		4 2

(P.T.O.)

		3		
89.	Which of the following statement	ts is correct?		
	(1) A low concentration of ort synthesis of starch in chloro	thophosphate in the cytosol promotes the		
	(2) A low concentration of ort synthesis of sucrose in cytos	thophosphate in the cytosol promotes the sol		
	(3) An abundance of orthophospi starch in cytosol	hate in the cytosol promotes the synthesis of		
	(4) An abundance of orthophospi starch in chloroplast	hate in the c		
90.	16S ribosomal RNA (or 16S rRNA	A) is a comp		
	(1) 308 small subunit	(2) 50S		
5.	(3) 40S small subunit	(4) 60S		
91.	The conversion of stored fatty acid	is to sucrose in germinating seeds begins in		
	(1) mitochondria	(2) cytosol		
	(3) vacuoles	(4) glyoxisomes		
92.	The precursor for the biosynthesi	is of glutamate family amino acids is		
	(1) 2-oxoglutarate	(2) 3-phosphoglycerate		
	(3) oxaloacetate	(4) pyruvate		
93.	ATP can be best referred as			
	(1) a molecule that serves as a storage form of energy			
	(2) a molecule that serves as an immediate donor of free energy			
	(3) a molecule that has the higher	est phosphate group transfer potential		
	(4) a molecule used as a source	of phosphate		

17

(335)

94.	In which range of the visible spectrum	leaves absorb the l	east amount of light?
	(1) Yellow (2) Blue	(3) Green	(4) Violet
95.	Cyt C, a freely soluble protein of the r between	nitochondrial intern	nembrane space moves
	(1) complex III and IV	(2) com	• •••
	(3) complex I and II	(4) NAE	
96.	Oligomycin inhibits		
	(1) cytochrome oxidase	(2) F ₀ ε	
	(3) adenine nucleotide translocase	(4) K+	9
97.	Ribulose bisphosphate carboxylase/c	xygenase of higher	plants has
	(1) eight identical large subunits an	d eight identical sn	nall subunits
	(2) eight identical large subunits an	d six identical sma	ll subunits
	(3) eight identical large subunits an	d four dissimilar s	nall subunits
	(4) eight identical large subunits an	d two identical sma	ıli subunits
98.	During C4 metabolism the first inter	mediate into which	CO ₂ is fixed is
	(1) malate	(2) pyruvate	
	(3) pyruvate phosphate	(4) oxaloacetate	
(335)	18		

	15		
99.	During photorespiration glycine is	synthesized in	25
	(1) peroxysome	(2) mitochondria	
	(3) chloroplast	(4) cytoplasm	
100.	The most abundant element next t	to C, H and O is	
	(1) P (2) N	(3) S	
101.	Green ear disease of 'Bajara' is ca	used by	
	(1) Sclerospora graminicola	(2) E7	
	(3) Plasmopara viticola	(4) S ₂	
102.	Mycoplasmas were first isolated in	pure cu	
	(1) Safferman and Morris	(2) Nocard and Roux	
	(3) Nowak	(4) Antonie van Leeuwenhoek	
103.	Soft rot disease of sweet potato is	caused by	
	(1) Rhizopus stolonifer	(2) Rhizopus sexualis	
	(3) Rhizoctonia solani	(4) Trichophyton tuberosa	
104.	Apple scab disease is caused by	₽ 9 ₽	,
	(1) Taphrina deformans	(2) Venturia inequalis	
	(3) Xanthomonas	(4) SO ₂ pollution	
(335)	8 g	19	(P.T.O.

105.	Tobacco mosaic virus was first obtained in crystalline form by		
	(1) D. Iwanowski	(2) F. Twort	
	(3) W. Stanley	(4) M. Beijerinck	
106.	The hosteric which were at high to		
100.	the bacteria which grow at high tel	mperature and low pH are known as	
	(1) acidophiles	(2) halop	
	(3) thermophiles	(4) therm	
		P a	
107.	Plasmid is also called as		
	(1) chromosome	(2) episor	
	(3) autosome	(4) hetero	
		• 4	
108.	Ethanol and CO ₂ is produced from sugars by		
	(1) Lactobacillus	(2) Acetobacter	
	(3) Stereptomyces	(4) Saccharomyces	
109.	Aflatoxin is produced by		
	(1) Aspergillus flavus	(2) Aspergillus niger	
	(3) Aspergillus terreus	(4) Neurospora crassa	
110.	The addition of pollutant-acclimated microbes or genetically engineered microbes to a hazardous waste site in order to react with hazardous wastes and render them harmless is known as		
	(1) bioconversion	(2) bioaugumentation	
	(3) bioremediation	(4) biodegradation	
(335)	20		
		,	

¥I

111.	The study of cellular changes in the underl		trait variations that does not e is called	involve
	(1) metagenomics	(2)	genomics	
	(3) epigenetics	(4)	proteomics	
112.	An infectious agent cor acids is known as	nsisting of self-repli	cating protein with no trace of	nucleic
2	(1) virions (2)	prions (3)	vi	
113.	A substance produced from further viral infe	1. The state of th	on	ing i
	(1) PR proteins	(2)	p !	
	(3) phytotoxins	. (4)	ir	
114.	The compounds which novo in response to in		healthy plants but are synthesi products are called	sed de
	(1) immunoglobulins	(2)	phytoalexins	
	(3) phytotoxins	(4)	interferons	
115.	The first step of nitrog	en fixation is	•	20
¥ .c.	(1) reduction of nitrog	en gas to ammoni	a ,	*
	(2) reduction of nitrog	en gas to nitrite		
	(3) reduction of nitrog	en gas to nitrate	er v	
	(4) reduction of nitrog	en gas to ammoni	um nitrate	
(335)	,	21	į.	P.T.O.)
	8			

116.	The process of uptake of naked DNA	A fragment by a cell is termed as
	(1) cloning	(2) transformation
20	(3) transduction	(4) conjugation
117.	Genetic material of TMV is	
	(1) ssRNA (2) ssDNA	(3) dsDN
118.	Methanogens can survive	a .
	(1) strictly under aerobic condition	
	(2) strictly under anaerobic condition	on
	(3) both under aerobic and anaerob	pic conditic
	(4) strictly inside a host	
119.	Organism used for commercial prod	luction of citric acid is
	(1) Bacillus sp.	(2) Acetobactor aceti
	(3) Aspergillus niger	(4) Lactobacillus
120.	Cyclosporin —A(CsA) the immunesu cases is produced by	appressive agent used in organ transplant
	(1) Monascus purpureus	(2) Trichoderma polysporum
	(3) Clostridium	(4) Staphylococcic
(335)	22	2

121.	Which of the following fungi was first reported to be involved in transmissio viral diseases?	n ot		
	(1) Albugo (2) Candida (3) Olpidium (4) Allomyces			
122.	Parasexuality in fungi refers to			
	(1) absence of palsmogamy, karyogamy and meiosis at all			
٠	(2) presence of palsmogamy, karyogamy and	ıt		
	(3) presence of palsmogamy, karyogamy ar point	nd		
*	(4) absence of asexual mode of reproductio			
123.	. Tabtoxin also known as wildfire toxin is pr			
	(1) Xanthomonas citri (2) Pseudomonas syringae	•		
	(3) Alternaria alternata (4) Fusicoccum amygdali			
124.	Thermococcus, Methanococcus and Methanobacterium are			
	(1) archaebacteria having eukaryotic histone homologue			
	(2) bacteria with cytoskeleton			
•5	(3) archaebacteria with negatively supercoiled DNA as in eukaryotes lacking histones	but		
	(4) bacteria with positively coiled DNA, cytoskeleton and mitochondria			
(335)	23 (P.1	r.o.)		

125.	Group of bacteria which does not possess peptidoglycan is			
	(1) cyanobacteria	(2) archaebacteria		
	(3) mycoplasma	(4) eubacteria		
126.	Which of the following call organe envelope?	elles does not have double-membraned		
	(1) Endoplasmic reticulum	(2) Lyso		
	(3) Nucleus	(4) Mito		
127.	Absolute linkage is known to occur	in		
	(1) male birds	(2) fema		
	(3) male Drosophila	(4) fema		
128.	Mendel was a lucky geneticist becau			
	(1) he worked on garden pea			
	(2) he studied only seven characters			
	(3) all characters studied by him segregated independently (4) he was a mathematician			
	(,)	Ser		
129.	During meiosis DNA replicates			
	(1) once (2) twice	(3) thrice (4) four times		
130.	Besides nucleus, DNA also occurs in	· · · · · · · · · · · · · · · · · · ·		
	(1) mitochondria	(2) mesosomes		
	(3) dictyosomes	(4) lysosomes		
/33E\				
(335)	24			

131.	Compaction factoris	r of DNA achiev	ed by nu	ucicosome su	ib-structure of o	chromatin
1	(1) 7 fold	(2) 10 fold	(3)	30 fold	(4) 42 fold	
132.	Which of the follo	wing segment	of chron	natin replica	tes part?	il.
¥	(1) Euchromatin		(2)	Constitutive	heterochromat	in
8	(3) Facultative he	terochromatin	(4)	Boti		-
133. Monosomy, in diploids, for all its chromosom						
	(1) Vicia faba	(*)	(2)	Date		
Đ	(3) Nicotiana taba	cum	(4)	Zea		
134.	Homozygosity is a	ttained by				
	(1) multiple cross	ing	(2)	out crossing	;	
	(3) selfing		(4)	somatic hyb	ridization	
135.	Resistance genes	are usually fou	nd in		2	
	(1) wild plants		(2)	crop plants		
	(3) cultivated plan	its	(4)	native plants	9	
136.	Haploid plants are	used for				
	(1) cytogenetical r	esearch	(2)	mutation res	search	
	(3) gametoclonal v	ariation	(4)	All of the ab	ove	
(335)	27		25			(P.T.O.)

137. A cross between a hybrid and its recessive parent is called					
	(1) back cross	(2) monohybrid cross			
	(3) test cross	(4) multiple cross			
138.		s isolated and then hybridized with canscribed, it does not pair uniformly a resent the			
	(1) replicons	(2) intr			
P	(3) repeated sequences	(4) ежо			
139.	Dicentric bridge and acentric fragment ger diagnostic features of				
	(1) tandem duplication	(2) pan			
	(3) pericentric inversion	(4) translocation			
140.	Which of the following is correctly matched?				
	(1) Monosomic: $2n+1$	(2) Nullisomic: 2n-1			
	(3) Trisomic: 2n+3	(4) Double monosomic: 2n-1	-1		
141.	Multiple alleles are present of				
	(1) same locus in one type of different chromosome pairs				
	(2) different loci in the same chromosome pair				
	(3) different loci in different chromosome pairs				
	(4) same locus in different types of chromosome pairs				
(335)		26			

142.	Which of the following types of crosses is most compatible?			
	(1) Interspecific (2) Intergeneric	(3) Intervarietal (4) Intrageneric		
143.	Sexual incompatibility can be overc	ome by		
	(1) ovule culture	(2) protoplast fusion		
	(3) in vitro pollination	(4) anth		
144.	F ₂ phenotypic ratio 7:1:1:7 indicat	es .		
	(1) codominance	(2) gene		
	(3) linkage	(4) pleio		
145.	XY-sex determining mechanism was	demonstrated in		
	(1) Triticum vulgare	(2) Datura stramonium		
	(3) Cajanus cajan	(4) Coccinia indica		
l 46.	Which of the following is a mutagen	7		
	(1) Ethyl methane sulphonate	(2) Colchicine		
•	(3) Aesculine	(4) Actidione		
47.	The chromosome complement of an known as	organism as seen of pro-metaphase is		
	(1) karyogram (2) karyotype	(3) histogram (4) idiogram		
335)	27	(P.T.O.)		
	8			

148.	The number of histone molecules that constitute a nucleosome sub-structure is					
10	(1) one (2) two	(3) four	(4) eight			
149.	The process by which gene(s) are transferred from one linkage group to another linkage group is called					
	(1) inversion	(2) transloca	tion			
	(3) amplification	(4) hy				
150.	The mode of DNA replication is					
10-11	(1) conservative	(2) sc				
	(3) dispersive	(4) rej				

अभ्यायया क ।लए ।नदश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत क पत्र का ही मृल्यांकन किया जायेगा।

97-

- अपनाः अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पे
- उत्तर-पत्र के प्रथम पृष्ठ पर पैन से अपना अनुक्रमांक निर्धारित स्थान जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का

दें।

6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व अनुक्रमांक सं० और ओ० एम० आर० पत्र सं० की प्रविष्टियों में उप

पर

- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा:
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-एत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत को गाढ़ा करें। एक से अधिक वृतों को गाढ़ा करने पर अश्ववा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खहली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-एक* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।