| Printed Pages : 4 | 760 | EAS-101 | |-------------------|-----|---------| | | | | | (Following | Paper | ID | and | Roll | No. | to | be | filled | in | your | |--------------|--------------|----|-----|------|-----|----|----|--------|----|------| | Answer Book) | | | | | | | | | | | Paper ID: 199121 | Roll No | ·III | | П | Τ | |---------|------|------|---|---| | | |
 | | _ | B. Tech. # (SEM. I) THEORY EXAMINATION, 2015-16 ENGINEERING PHYSICS-I [Time: 3 hours] [Total Marks: 100] #### SECTION-A - 1. Attempt all parts. All parts carry equal marks. Write answer of each part in short. (2x10=20) - (a) Is earth an inertial frame? Explain. - (b) What is significance of mass energy relation? - (c) Two independent sources cannot produce interference. Why? - (d) What happen when young doubel slit experiment immersed in water? - (e) What will be the effect on the intensity of principal maxima of diffraction pattern when single slit is replaced by double slit? - (f) What is the difference between plan polarized and partially plane polarized light? - (g) What is optical pumping? - (h) What is principle of laser? - (i) What is acceptance cone in optical fibre? - (j) Give at least two applications of holography in medical field. #### **SECTION-B** Attempt any five questions from this section. (10x5=50) - 2. Derive the expression for time dilation. Show that it is a real effect. - 3. Deduce an expression for variation of mass with velocity. At what speed the mass of an object becomes 2.25 times its rest mass. - 4. Discuss the formation of interference fringes due to a wedge shape thin film seen by normally reflected sodium light. In Newton's ring experiment the diameter of 4th and 12th dark ring are 0.400 cm and 0.700 cm respectively. Deduce the diameter of 20th ring. - 5. Obtain intensity expression for single slit Fraunhofer diffraction pattern. Light of wavelength 5500Å falls normally on a slit of width 22.0×10⁻⁵ cm. Calculate the (2) - angular position of two minima on either side of central maxima. - 6. Discuss construction and working of half shade polarimeter. - 7. Discuss Einstein's cofficient. Find the relation between them. - 8. What do you mean by attenuation in optical fibre. Discuss different types of losses in optical fibre. - 9. Describe the process of construction and reconstruction of image on hologram. Also describe application of holography. ### **SECTION-C** Attempt any two questions from this section. (15x2=30) - 10. (a) Show that space time or interval between two events remains invariant under Lorentz transformation. - (b) Show the effect of introducing thin mica sheet in the path of one of interfering beam in young's double slit experiment. - (c) Find the mass and speed of electron with energy of 2 MeV. - 11. (a) Explain the formation of spectrum by plane diffraction grating. 4500 (3) P.T.O. - (b) Explain how wavelength of sodium light can be calculated from Fresnel biprisim experiment. - (c) If the population ratio between two energy states in Ruby laser is 2×10^{-40} , emitting a light beam of wavelength 6943Å. Find the temperature of energy states. - 12. (a) Discuss the difference between single mode fibre and multimode fibre. - (b) Explain construction and working of Nicol prism. - (c) A step index fibre has core refractive index 1.466, cladding refractive indes 1.460, compute the maximum radius allowed, if fibre support only one mode by using wavelength of 5000Å. ## **Physical Constants:** Mass of electron, $m_0 = 9.1 \times 10^{-31} \text{ kg}$ Mass of proton, $m_p = 1.67 \times 10^{-27} \text{ kg}$ Speed of light, c = 3×10^8 m/s Planck's constant, $h = 6.63 \times 10^{-34} \text{ J/s}$ Charge on electron, $e = 1.6 \times 10^{-19} \text{ C}$ Boltzmann's constant = $1.38 \times 10^{-23} \text{m}^2 \text{kgs}^{-2} \text{K}^{-1}$ —x—