COMMON ENTRANCE TEST - 2005

04 - 05 - 2005	CHEMISTRY	02.30 PM to 03.50 PM
DATE	SUBJECT	TIME

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

MENTI	ON YOUR	QUESTION BO	OKLET DETAILS
	NUMBER	VERSION CODE	SERIAL NUMBER
		A-1	015953

IMPORTANT INSTRUCTIONS TO CANDIDATES

(Candidates are advised to read the following instructions carefully, before answering on the OMR answer sheet.)

- 1. Ensure that you have entered your Name and CET Number on the top portion of the OMR answer sheet.
- 2. ENSURE THAT THE TIMING MARKS ON THE OMR ANSWER SHEET ARE NOT DAMAGED / MUTILATED / SPOILED.
- This Question Booklet is issued to you by the invigilator after the 2rd Bell. i.e., after 02.35 p.m.
- Carefully enter the Version Code and Serial Number of this question booklet on the top portion of the OMR
 answer sheet.
- As answer sheets are designed to suit the Optical Mark Reader (OMR) system, please take special care while filling the entries pertaining to CET Number and Version Code.
- Until the 3rd Bell is rung at 02.40 p.m. :
 - . Do not remove the staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - · Do not start answering on the OMR answer sheet.
- After the 3" Bell is rung at 02.40 p.m., remove the staple present on the right hand side of this question booklet and start answering on the bottom portion of the OMR answer sheet.
- This question booklet contains 60 questions and each question will have four different options / choices.
- During the subsequent 70 minutes :
 - Read each question carefully.
 - Determine the correct answer from out of the four available options / choices given under each question.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALLPOINT PEN against the question number on the OMR answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE OMR SHEET IS AS SHOWN BELOW:

10. Please note that :

For each correct answer : ONE mark will be awarded.

For each wrong answer : QUARTER (1/4) mark will be deducted.

If more than one circle is shaded : ONE mark will be deducted.

- Even a minute unintended ink dot on the OMR sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind.
- Use the space provided on each page of the question booklet for Rough work AND do not use the OMR answer sheet for the same.
- 12. After the last bell is rung at 03.50 p.m., stop writing on the OMR answer sheet.
- 13. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- After separating and retaining the top sheet (CET Cell Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 15. Preserve the replica of the OMR answer sheet for a minimum period of One year.

015953

" agt "

CHEMISTRY

1.	ignited t	re of two moles of carbon mono o convert the carbon monoxide to be change in internal energy, the	o carbon	done mole of oxygen, in a c dioxide. If ΔH is the enthal	losed ve py char	essel is ige and
	1)		411			
	2)	$\Delta H < \Delta E$			*	
		$\Delta H = \Delta E$.0			225
	. 3)	[1] SOM [1] [1] [2] [2] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4		ty of the vessel		
	.4)	the relationship depends on th	e capaci	ty of the vesser		
2.	The cool	ing in refrigerator is due to				
	1)	Reaction of the refrigerator ga		61 10		
3.5	2)	Expansion of ice				
	3)	The expansion of the gas in th	e refrige	rator		
	4)	The work of the compressor				100
3.	For a sv	stem in equilibrium, $\Delta G = 0$, un	der con	ditions of constant		8
٠.	1)	temperature and pressure	2)	temperature and volume		
	1975		4)	energy and volume		
	3)	pressure and volume	4)	energy and volume		
4.	Molar h	eat of vaporisation of a liquid is	6 kJ mo	ole ⁻¹ . If the entropy change is	S	
		le-1 K-1, the boiling point of the				
33	1)	375°C	2)	375 K		
	3)	273 K	4)	102°C		100
	0)	21010	/			2.0
5.	The tem	perature of the system decrease	es in an			
	1)	adiabatic compression	2)	isothermal compression		
	3)	isothermal expansion .	4)	adiabatic expansion	757	
	10000			SELECTED STATE OF THE SELECTION OF THE S	27.5	

6.	15 mole	s of H_2 and 5.3 ium, the conc	2 moles of I	are mixe	d and	allowe	d to a	ttain e	quilib	rium at 500	C. At
		nation of HI is		4 444 15 100		00 10 1	norea.	The	quino	rum consta	ne for
	1)	50			2)	15					
	3)	100	20 (8)	5 6 6	4)	25	0				
7.	If, in the	reaction N_2 cules at equili	$0_4 \leftrightarrow 2NO_5$ brium will	x is that	part	of N ₂ O	4 whic	ch disso	ciates	, then the nu	mber
	1)	1	177	138	2)	3		12			
1	3)	(1+x)	4, 4		4)	(1 + x)2		-		
8.	Which o	f these does n	ot influenc	e the rate	of rea	action ?		*		37.4	
	7.00	Nature of th			2)			on of th	ne rea	ctants	
	3)	Temperatur	e of the rea	ction	4)	Molecu	ularity	y of the	react	ion	
9.	rate by 4	reaction A + times, and d order of the re	oubling the	is found the concentr	at do ation	ubling to	the cou	ncentra the rea	ation o	of A increase rate. What i	s the
	1)	4			2)	3/2				761	9
	3)	3		7/2	4)	1	1			138	1,7
10.	The rate	at which a su	ıbstance re	acts deper	nds or	its		1			
	1)	atomic weigh			2)	atomic		ber			
	3)	molecular w	eight		4)	active					
	-		(8	nago for P	onah	Wash	-	-		7.0	

1.0				. * '
11.	equilibri	um concentrations of both the res	the actant	e value of $K_{\rm c}$ at 800°C is 0.1. When the is is 0.5 mol, what is the value of $K_{\rm p}$ at the
	same ter	nperature?		
	1)	0.5	2)	0.1
	3)	0.01	4)	0.025
12.	The exte	ent of adsorption of a gas on a soli	d dep	ends on
	1)	nature of the gas	2)	pressure of the gas
•	3)	temperature of the gas	4)	all are correct
13.	An emul	sifier is a substance which		
	1)	stabilises the emulsion	2)	homogenises the emulsion
	3)	coagulates the emulsion	4)	accelerates the dispersion of liquid in liquid
14.	Which o	f the following types of metals for	m the	most efficient catalysts?
	1 1)	alkali metals	2)	alkaline earth metals
0	. 3)	transition metals	4)	all the above
15.	The spe	cies among the following, which c	an act	as an acid and a base is
	1)	HSO [⊕] ₄	2)	SO4-
	3)	H ₃ O [⊕]	4)	Cl [⊖]

22200	ومعدال عاموه	ran pari di Barranan ran ran ran sa	aran miliara esam			
16.		solution has equal vo	olumes of 0.2M A	H ₄ OH and 0.02	M NH ₄ Cl. Th	e pkb of the
	base is 8	5. The pH is		4 4 5	ACT OF	41
2	1)	10	2)	9		
	3)	4		7		90
	٠,		4)			
17.	The hyd value of	rogen electrode is dipp 2.303 RT/F is 0.059 V	ed in a solution o	f pH 3 at 25°C. T	ne potential w	ould be (the
	1)	0.177 V	. 2)	0.087 V	Y Section	
	3)	0.059 V	W. C.		1000	102
18.	20 ml of	0.5 N HCl and 35 ml	of 0.1N NaOH are	mixed. The resu	lting solution	will
		be neutral		2) be basic	*	
	3)	turn phenolphthaleir	solution pink	4) turn methyl	orange red	
19.	Corrosio are	n of iron is essentiall	y an electrochen	nical phenomenor	where the c	ell reaction
÷	1)	Fe is oxidised to Fe^{2}	and dissolved ox	tygen in water is	reduced to O	H
	2)	Fe is oxidised to Fe^{3+}	and H_2O is red	uced to O_2^{2-}		jar .
	3)	Fe is oxidised to Fe2+	and H_2O is redu	ced to O2	5.88	
	4)	Fe is oxidised to Fe^{2i}	and H_2O is red	uced to Q_2		· v
20.	The stan	dard electrode potenti	al is measured by	<i></i>		
	1)	Electrometer.		Voltmeter		9
	3)	Pyrometer		Galvanometer		

- A precipitate of AgCl is formed when equal volumes of the following are mixed. $\left[K_S \text{ for } AgCl = 10^{-10}\right]$
 - 1) 10-4 M AgNO3 and 10-7 M HCl 2) 10-6 M AgNO3 and 10-6 M HCl
- - 3) 10-5 M AgNO3 and 10-4 M HCl
- 4) 10-6 M AgNO3 and 10-6 M HCl
- 22. Which one of the following defects in the crystals lowers its density?
 - 1) Frenkel defect

2) Schottky defect

3) F-centres

- Interstitial defect
- A radioactive isotope has a half life of 10 days. If today 125 mg is left over, what was its original weight 40 days earlier?
 - 1) 2g

600 mg

3) 1g

- Which of the particles cannot be accelerated?
 - 1) α-particle

β - particle

3) Protons

- Neutrons
- In which of the following nuclear reactions neutron is emitted?
 - 1) $\frac{27}{13}Al + \frac{4}{2}He \rightarrow \frac{30}{15}P$ 2) $\frac{12}{6}C + \frac{1}{1}H \rightarrow \frac{13}{7}N$
 - 3) ${15 \atop 15} P \rightarrow {30 \atop 14} Si$
- 4) $\frac{241}{96}Am + \frac{4}{2}He \rightarrow \frac{245}{97}Bk$

			122					
26.	Gold is	extracted by hydrometa	allurgical pro	ocess	s, based on its prope	rty :		e e
	- 1)	of being electropositiv	ve			15		
+	, 2)	of being less reactive			le ilu			
	3)	to form complexes wh	ich are wate	er so	luble			
	4)	to form salts which a	re water solu	ıble			30	
07	T 1-1						ü (K	(1)
27.	in blast	furnace, iron oxide is r	educed by					
	1)	Hot blast of air		2)	Carbon monoxide	200		
	3)	Carbon	10 141	4)	Silica			13
28.	Which o	f the following pairs of	elements car	nnot	form an alloy?		81.79	
	1)	Zn, Cu		2)	Fe, Hg		$\mathcal{S} = \mathcal{S}_{i}$	
	3)	Fe, C		4)	Hg, Na			
29.	Which o	ompound is zero valent	metal comp	lex?	,		20	
			mount comp				- 8	
	1)	$[Cu(NH_3)_4]SO_4$		2)	$\left[Pt\left(NH_3\right)_2Cl_2\right]$			
	3)	[Ni (CO) ₄]	30 0	4)	K_3 [Fe (CN) ₆]	100		- 125
30.	Alum is	a water purifier becaus	e it				. 6.2	
					1.0			
	1)	coagulates the impuri	ties.		8			
	2)	softens hard water				100		

gives taste

4) destroys the pathogenic bacteria

31.		n, gives a monocarbo						
4		ohol. A is						
	- 1)	chloroform		2)	chloral			
	. 3)	methyl chloride		4)	monochloro acetic ac	id		
32.	Which o	f the following haloal	kanes is mos	t reac	tive?			ts
	1)	1-chloropropane	2.0	2)	1-bromopropane			
	3)	2-chloropropane		4)	2-bromopropane			
33.	The read	ction in which phenol	differs from	alcoh	ol is			
	1)	it undergoes esterif	ication with o	arbox	cylic acid			
	2)	it reacts with ammo	onia					
	3)	it forms yellow crys	tals of iodofor	rm			100	
	4)	it liberates H_2 with	Na metal	(4)				
34.		nic compound A cont						
		water and alkaline						1.
	1)	C_2H_5Cl		2)	$C_2H_5COOCH_3$			
	3)	C_2H_5OH		4)	C_2H_6		37	16
35.	Which o	f the following is an	amphoteric a	cid?				
	1)	Glycinc		2)	Salicylic acid			
	3)	Benzoic acid	20 17	. 4)	Citric acid		95	

36.	Benzyl benzald	alcohol and sodit ehyde. This reacti	ım benzoate ion is known	is obtain as	ed by the action	of sodium	hydrox	ide on
	1)	Perkin's reaction	n	2)	Cannizzaro's rea	ction		
31	3)	Sandmeyer's rea	action	4)	Claisen condens	0.000		35
37.	Ethyl ch	loride on heating	with AgCN,	forms a co	mpound 'X'. The f	unctional is	omer o	f'X' is-
	. 1)	$C_2 \ H_5 \ NC$		2)	$C_2 H_5 NH_2$	W.		
	3)	$C_2\ H_5\ CN$		4)	None of the abov	e .	i.	12
38.	On comp	ound, containing colete oxidation it indicates in the contact of t	only carbon, l s converted in	nydrogen nto a com	and oxygen, has a pound of molecula	n molecular r weight 60.	weight The o	of 44. riginal
	1)	an aldehyde		2)	an acid			
0 0	3)	an alcohol		4)	an ether	740		
39.	Grignar	d reagent adds to			N R OF N	3.	ata e	
	1)	>C=0	0	2)	-C = N			
	3)	>C = S		4)	all of the above		12.3	23
40.	Which of	f the following bio	molecules co	ntain a n	on-transition met	al ion ?	0	
S.,	1)	Vitamin B ₁₂		- 2)	Chlorophyll		ő.	
	3)	Haemoglobin		4)	Insulin			
			(Space fo	r Rough	Work)	1 7 2		

41.	Three di	mensional molecu	les with cross li	nks a	re formed in the case of	'a
	1)	Thermoplastic	25 H W	2)	Thermosetting plastic	
	3)	Both		4)	None	
42.	Sucrose	molecule is made	up of			
	11)	a gluco pyranose	and a fructo py	ranos	e`	
	2)	a gluco pyranose				
	3)	a gluco furanose	and a fructo pyr	anose		
	4)	a gluco furanose	and a fructo fur	anose		
43.	Water in	soluble componer	nt of starch is	.,		
$\widehat{\mathcal{X}}_{i}$	1)	amylopectin		2)	amylose	
	. 3)	cellulose		4)	none of the above	
44.	An exam	ple for a saturate	d fatty acid, pre	sent i	n nature is	* 1.0
	1)	Oleic acid	10 mm	2)	Linoleic acid	3.00
	3)	Linolenic acid	4 1 1	4)	Palmitic acid	100
45.	A Nanor	peptide contains	peptide li	nkag	es.	
	1)	10 2 35000	s in the let	. 2)	8 . 1	11 M
	3)	9	No. of the last of	4)	18	200

		ipie of a sulphur containing amino				
	. 1)	Lysine	2)	Serine	177	
	3)	Cysteine	4)	Tyrosine	37	
47.	Which o	f the following is not present in a n	ucle	otide?		4
	1)	cytosinę	2)	guanine		a , '
	3)	adenine	4)	tyrosine		
48.	Antisept	ic chloroxylenol is				2) 2000
	1)	4 - chloro - 3, 5 - dimethyl phenol	2)	3 - chloro - 4, 5 - din	nethyl phei	nol
	3)	4 - chloro - 2, 5 - dimethyl phenol	4)	5 - chloro - 3, 4 - din	ethyl pher	nol
					0.0000	
49.		of an element A has three electrons in its outermost orbit. The form				
49.	electron		ula			
49.	be	s in its outermost orbit. The form	ula	of the compound be		
49. 50.	be	s in its outermost orbit. The form A_3B_6	2) 4)	of the compound be A_2B_3 A_2B		
	be	in its outermost orbit. The form A_3B_6 A_3B_2	2) 4) st pa	of the compound be A_2B_3 A_2B		

13

51.	Molarity of 0.2 N H2SO4 is						- 12		8
	1)	0.2		2)	0.4				4.0
	3)	0.6	10.0	4)	0.1			E - 11	35
52.	In the equation of state of an ideal gas $PV = nRT$, the value of the universal gas constant								
	would depend only on								
	1)	the nature of the gas			the pressu	re of the gas			
	3)	the units of	the measurem	nent 4)	None of the	e above			
53.	A commercial sample of hydrogen peroxide is labelled as 10 volume. Its percentage strength								
	is nearly	<i>t</i>			*				
	1)	1%	10.	2)	3%			*:	
	. 3)	10%		4)	90%		10		
54.	Activated charcoal is used to remove colouring matter from pure substances. It works								
	by								
	1)	oxidation		2)	reduction	3. 3			
S	3)	bleaching		4)	adsorption	K B			
55.	When plants and animals decay, the organic nitrogen is converted into inorganic nitrogen.								
	The inorganic nitrogen is in the form of								
	1)	Ammonia		2)	Elements	of nitrogen-			1
	3)	Nitrates	5 1 3 4 × 1	4)	Nitrides				
	557		(Space	e for Rough	Work)	W 1			

- A gas decolourised by KMnO₄ solution but gives no precipitate with ammonical cuprous chloride is
 - 1) Ethane

2) Methane

3) Ethene

4) Acetylene

57.
$$H_3C - C = CH - CH - CH_3$$
 is
$$\begin{array}{c|c} Cl & CH_2 \end{array}$$

- 1) 2-chloro-4-methyl-2-pentene
- 4-chloro-2-methyl-3-pentene
- 3) 4-methyl-2-chloro-2-pentene
- 4) 2-chloro-4,4-dimethyl-2-butene
- 58. Amongst the following, the compound that can most readily get sulphonated is?
 - 1) Benzene

Toluene

3) Nitrobenzene

- 4) Chlorobenzene
- 59. Household gaseous fuel (LPG) mainly contains
 - 1) CH4

C₂H₂

3) C2H4

- 4) C₄H₁₀
- 60. Use of chlorofluoro carbons is not encouraged because
 - they are harmful to the eyes of people that use it.
 - 2) they damage the refrigerators and air conditioners.
 - 3) they'eat away the ozone in the atmosphere.
 - 4) they destroy the oxygen layer.

15 A -

.