COMMON ENTRANCE TEST - 2006

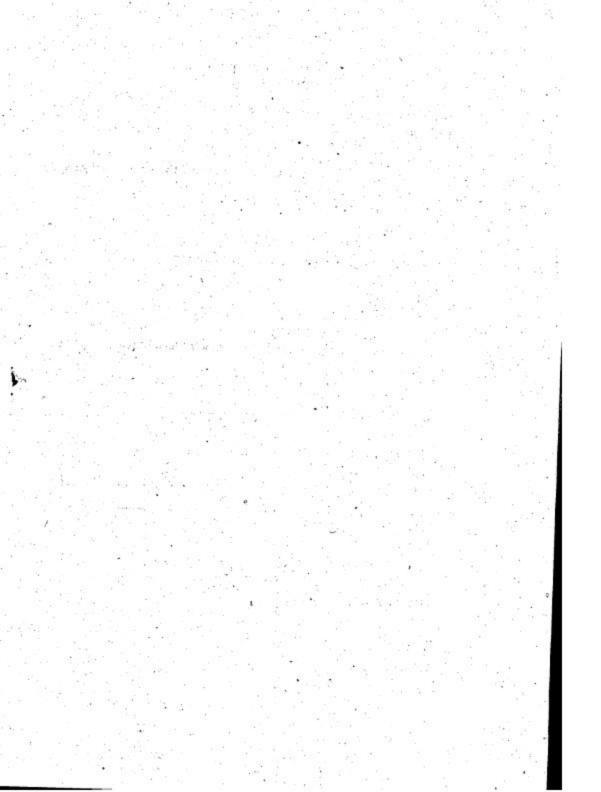
DATE	SUBJECT	TIME
10 - 05 - 2006	CHEMISTRY	2.30 PM to 3.50 PM

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

MENTION YOUR	QUESTION BO	QUESTION BOOKLET DETAILS					
CET NUMBER	VERSION CODE	SERIAL NUMBER					
	A-1	12225					

IMPORTANT INSTRUCTIONS TO CANDIDATES

(Candidates are advised to read the following instructions carefully, before answering on the OMR answer sheet,)


- Ensure that you have entered your Name and CET Number on the top portion of the OMR answer sheet.
- ENSURE THAT THE BAR CODES, TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET 2. ARE NOT DAMAGED / MUTILATED / SPOILED.
- This Question Booklet is issued to you by the invigilator after the 2rd Bell. i.e., after 2.35 p.m.
- Enter the Serial Number of this question booklet on the top portion of the OMR answer sheet.
- Carefully enter the Version Code of this question booklet on the bottom portion of the OMR answer sheet and SHADE the respective circle completely.
- As answer sheets are designed to suit the Optical Mark Reader (OMR) system, please take special care while filling and shading the Version Code of this question booklet.
- DO NOT FORGET TO SIGN ON BOTH TOP AND BOTTOM PORTION OF OMR ANSWER SHEET IN 7. THE SPACE PROVIDED.
- Until the 3rd Bell is rung at 2.40 p.m. : 8.
 - Do not remove the staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet:
- After the 3" Bell is rung at 2.40 p.m., remove the staple present on the right hand side of this question booklet 9. and start answering on the bottom portion of the OMR answer sheet.
- This question booklet contains 60 questions and each question will have four different options / choices. 10.
- During the subsequent 70 minutes :
 - Read each question carefully.
 - Determine the correct answer from out of the four available options / choices given under each question.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALLPOINT PEN against the question number on the OMR answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE OMR SHEET IS AS SHOWN BELOW:

- Please note that even a minute unintended ink dot on the OMR sheet will also be recognised and recorded by the 12. scanner. Therefore, avoid multiple markings of any kind.
- Use the space provided on each page of the question booklet for Rough work AND do not use the OMR answer 13. sheet for the same. . .
- After the last bell is rung at 3.50 p.m., stop writing on the OMR answer sheet. 14.
- Hand over the OMR ANSWER SHEET to the room invigilator as it is. 15.
- After separating and retaining the top sheet (CET Cell Copy), the invigilator will return the bottom sheet replica 16. (Candidate's copy) to you to carry home for self-evaluation.
- Preserve the replica of the OMR answer sheet for a minimum period of One year. 17.

SR - 17

CHEMISTRY

- 1. Which of the following is not an ore of magnesium?
 - 1) Carnallite

2) Dolomite

3) Calamine

- 4) Sea water
- 2. The atomic numbers of Ni and Cu are 28 and 29 respectively. The electron configuration $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$ represents
 - 1) Cu+

2) Cu2+

3) Ni2+

- 4) Ni
- 3. In the following, the element with the highest ionisation energy is
 - 1) $[Ne]3s^23p^1$

2) $[Ne]3s^23p^3$

3) $[Ne]3s^23p^2$

- 4) [Ne]3s²3p⁴
- .4. In the conversion of Br_2 to BrO_3^- , the oxidation number of Br changes from
 - 1) zero to + 5

2) +1 to +5

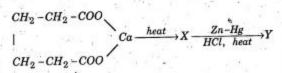
3) zero to - 3

- 4) +2 to +5
- Among the alkali metals cesium is the most reactive because
 - its incomplete shell is nearest to the nucleus
 - it has a single electron in the valence shell
 - 3) it is the heaviest alkali metal
 - the outermost electron is more loosely bound than the outermost electron of the other alkali metals.

6.	Wh	ich d	of the f	ollow	ing rep	resent	s the l	Lewis s	tructu	re of I	V ₂ mo	lecule	?		1
		1)	*N =	N _×	1	4.1		2) * N *	= N×		2.00			
		3)	×N -	$\overset{\times}{N}\overset{\times}{\times}$				4) *N*	= N××					
7.	Hyd	iroge	en bon	d is st	ronges	st in		92.5		4.			17	8.5	
			S-I					2	0-	H	-8	-1 -		12	
	- 12 - 12 - 13	3)	F-F	I	F ·				0-						f. s
3.	The of K	dece	omposi requir	tion o	f a cer	tain m	ass of eutrali	CaCO ₃	gave l	1.2 d	m ³ of	co, g	as at S	STP. T	he mass
		1)	56 g			erente yen			28 g						
1		3)	42 g						20 g					90 KS	127
	The	den	sity of	a gas	is 1.96	4 g dn	-3 at 2	73 k a	nd 76 c	m Ha	The				t
	7	1)	CH		31				$C_{\eta}H_{\eta}$. The	gas is			
	80	3)	CO_2						Xe	6			1,20		
0.	0.06 solut	mol	e of <i>K</i> is 35.8	VO ₃ s kJmo	olid is	added	to 10	0 cm ³ o	of wate	er at :	298 k.	The	entha f the se	py of a	KNO _{3aq} will be
-	•	1)	293 k			-		2)	298 k		1				
		3)	301 k			:- "	, , .	4)				11 ¹⁰			
	14-					(Spi	ace for	Rough	Work			-	-		

- 11. 4 moles each of SO_2 and O_2 gases are allowed to react to form SO_3 in a closed vessel. At equilibrium 25 % of O_2 is used up. The total number of moles of all the gases present at equilibrium is
 - 1) 6.5

2) 7.0


3) 8.0

- 4) 2.0
- 12. An example for autocatalysis is
 - 1) oxidation of NO to NO2
 - 2) oxidation of SO2 to SO3
 - decomposition of KClO₃ to KCl and O₂
 - 4) oxidation of oxalic acid by acidified KMnO4
- During the fusion of an organic compound with sodium metal, nitrogen of the compound is converted into
 - 1) NaNO₂

2). NaNHo

3) NaCN

- 4) NaNC
- 14. Identify the product Y in the following reaction sequence

1) pentane

2) cyclobutane

3) cyclopentane

- 4) cyclopentanone
- 15. The reaction $C_2H_5ONa + C_2H_5I \rightarrow C_2H_5OC_2H_5 + NaI$ is known as
 - 1) Kolbe's synthesis

- 2) Wurtz's synthesis
- Williamson's synthesis
- 4) Grignard's synthesis

16. ΔG^0 Vs T plot in the Ellingham's diagram slopes downwards for the reaction

. 1)
$$Mg + \frac{1}{2}O_2 \rightarrow MgO$$

2)
$$2Ag + \frac{1}{2}O_2 \rightarrow Ag_2O$$

3)
$$C + \frac{1}{2}O_2 \to CO$$

4)
$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

17. Which of the following reaction taking place in the Blast furnace is endothermic?

1)
$$CaCO_3 \rightarrow CaO + CO_2$$

3)
$$C + O_2 \rightarrow CO_2$$

4)
$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

18. Liquor ammonia bottles are opened only after cooling. This is because

- 1) it is a mild explosive
- 2) it is a corrosive liquid
- it is a lachrymatory
- 4) it generates high vapour pressure

19. The formation of $O_2^+[P_tF_6]^-$ is the basis for the formation of Xenon fluorides. This is because

- 1) O2 and Xe have comparable sizes
- 2) both O2 and Xe are gases
- 3) O_2 and Xe have comparable ionisation energies
- 4) O2 and Xe have comparable electronegativities

20. The highest magnetic moment is shown by the transition metal ion with the configuration

1) 3d2

2) 3d5

3) 3d7

4) 3d9

	3)	Li ₂		4) He ₂ ⁺		
	, 1)	H_2^+		2) O ₂		
25.	Which o	f the following is dis	magnetic?	the state of		
	3)	He ₂		4) H ₂		
	, 1)	N_2		2) O ₂		
24.	Which o	f the following has t	he highest bon	and the second s		
		H ₂ O		4) :NH ₃		
	-1)	NO ₂	, N	2) H ₂ NCH ₂ CH ₂	NH ₂	
23.	Which of	the following can p	articipate in li			
		$\left[{\it Fe} \left({\it CN} \right)_6 \right]^{3-}$		4) $\left[Cr(NH_3)_6 \right]$	3+	100
		$[CoF_6]^{3-}$		2) $\left[Co(NH_3)_6 \right]$	1975	e
22.	In which	of the following comp	ex ion, the cent	ral metal ion is in a	state of sp^3d^2 hybridi	sation?
	3)	an oxidising agent		a reducing agent		
		a chelating agent	2)	a central metal in	a coordination compo	und
21.	A transit	ion metal ion exists	in its highest o	oxidation state. It i	s expected to behave	as
						A

26.	reaction 0.01 M	ı follows I order kin	tant X etics, t	dec	rease rate o	s fr of tl	om 0.1 M to 0.025 M in the reaction when the o	n 40 min oncentra	utes. If the tion of X is
	0.01 101	will be		8 3			5.4v		. 1
	1)	1.73 × 10 ⁻⁴ M min ⁻¹	ι.			2)	$3.47 \times 10^{-4} M \mathrm{min}^{-1}$	L	
	3)	3.47 × 10 ⁻⁵ M min ⁻¹	1			4)	$1.73 \times 10^{-5} M \text{ min}^{-1}$		
27.	Chemica	al reactions with ver	v high	E v	value	ar	e generally		
- 50		very fast		a		2)	very slow		22
	3)	moderately fast	4		Ř	4)	spontaneous	-9.4	1.3
28.	Which o	f the following does r	not con	duc	t elec	ric	ity?		
	1)	fused NaCl					solid NaCl		1
1	3)	brine solution				4).	Copper		
29.	achopiec	a. If the same quanti	ity of e	lect.	ricity	18 1	gh CuSO ₄ solution, 0.1 bassed through acidula	6 g of Co	opper gets
	volume o	In n a liberated at ST	P will b	e [(Given	At.	Wt. $Cu = 64$	19	210) 100 mm
	1)	4.0 cm ³			1	2)	56 cm ³		2800
5.	3)	604 cm ³	100			4)	8.0 cm ³	3. 4	20 111 20

30. Solubility product of a salt AB is 1 × 10⁻⁸ M² in a solution in which the concentration of A⁺ ions is 10⁻³ M. The salt will precipitate when the concentration of B⁻ ions is kept

- 1) between 10⁻⁸ M to 10⁻⁷ M
- 2) between 10^{-7} M to 10^{-6} M

3) > 10⁻⁵ M .

4) < 10⁻⁸ M

31. Which one of the following condition will increase the voltage of the cell represented by the

equation: $Cu_{(s)} + 2Ag^{+}_{aq} \rightleftharpoons Cu^{2+}_{aq} + 2Ag_{(s)}$

- 1) increase in the dimensions of Cu electrode
- increase in the dimensions of Ag electrode
- increase in the concentration of Cu²⁺ ions
- increase in the concentration of Ag⁺ ions
- The pH of 10-8 M HCl solution is 32.
 - 1) 8.

2) 'more than 8

3) between 6 and 7

- slightly more than 7
- The mass of glucose that should be dissolved in 50 g of water in order to produce the same lowering of vapour pressure as is produced by dissolving 1 g of urea in the same quantity of 33. water is

3) 6 g

- 4) 18 g
- 34. Osmotic pressure observed when benzoic acid is dissolved in benzene is less than that expected from theoretical considerations. This is because
 - 1) benzoic acid is an organic solute
 - benzoic acid has higher molar mass than benzene
 - 3) benzoic acid gets associated in benzene
 - 4) benzoic acid gets dissociated in benzene
- For a reaction to be spontaneous at all temperatures
 - 1) ΔG and ΔH should be negative 2) ΔG and ΔH should be positive

3) $\Delta G = \Delta S = 0$

4) $\Delta H < \Delta G$

Which	of the following							
	or one ronowing (electrolyte will	have m	aximum fl	occulation	value for F	P(OH)	enl
1)	NaCl						e(O11)3	501.
3)	$(NH_4)_3 PO_4$. 4	K2SO4				
For a re	eversible reaction	$X_{(a)} + 3Y_{(a)}$	$\Rightarrow 2Z_{i}$		1.17			2
					40 and 50	11Z=11=1	- Tall -	
The ten	perature at whi	ch the above re	eaction a	ttains equ	ilibrium	is about	respecti	ively
1)	400 K							
3)	273 K		4)	373 K				
The radi	ii of Na* and Cl ⁻ is	ions are 95 pn	and 18	1 pm resp	ectively.	The edge ler	ngth of A	VaC
1)	276 pm		2)	138 pm				
3)	552 pm		4)	415 pm				
Inductiv	e effect involves	11 1.75			- 44			
1)			. 2)	delocalis	ation of n	electrons	- 40	
(3)	delocalisation o	f σ electrons	4)					
The basic	city of aniline is	less than that	of cyclol	exylamin	e. This is	due to		
1)	+R effect of $-N$	H ₂ group						
	For a re $\Delta H = -$ The term 1) 3) The radiunit cell 1) 3) Inductiv 1) 3) The basic	3) $(NH_4)_3 PO_4$ For a reversible reaction $\Delta H = -40 \text{kJ}$ the standar The temperature at whin 1) $400 K$ 3) $273 K$ The radii of Na^+ and Cl^- unit cell is 1) 276pm 3) 552pm Inductive effect involves 1) displacement of 3) delocalisation of The basicity of aniline is 1) $+R$ effect of $-N$	3) $(NH_4)_3 PO_4$ For a reversible reaction : $X_{(g)} + 3Y_{(g)}$ $\Delta H = -40 \mathrm{kJ}$ the standard entropies of The temperature at which the above reconstruction 1) $400 \mathrm{K}$ 3) $273 \mathrm{K}$ The radii of Na^+ and Cl^- ions are 95 pm unit cell is 1) $276 \mathrm{pm}$ 3) $552 \mathrm{pm}$ Inductive effect involves 1) displacement of σ electrons 3) delocalisation of σ electrons	3) $(NH_4)_3 PO_4$ For a reversible reaction: $X_{(g)} + 3Y_{(g)} \rightleftharpoons 2Z_{(g)}$ $\Delta H = -40 \text{kJ}$ the standard entropies of X , Y and X . The temperature at which the above reaction at 1) $400 K$ 2) 3) $273 K$ 4) The radii of Na^+ and Ct^- ions are 95 pm and 18 unit cell is 1) 276pm 2) 3) 552pm 4) Inductive effect involves 1) displacement of σ electrons 2) 3) delocalisation of σ electrons 4) The basicity of aniline is less than that of cyclobic 1) $+ R$ effect of $-NH_2$ group 2)	3) $(NH_4)_3 PO_4$ 4) K_2SO_4 For a reversible reaction: $X_{(g)} + 3Y_{(g)} \rightleftharpoons 2Z_{(g)}$ $\Delta H = -40 \mathrm{kJ}$ the standard entropies of X , Y and Z are 60, The temperature at which the above reaction attains equal 1) $400 K$ 2) $500 K$ 3) $273 K$ 4) $373 K$ The radii of Na^+ and Cl^- ions are 95 pm and 181 pm respondit cell is 1) $276 \mathrm{pm}$ 2) $138 \mathrm{pm}$ 3) $552 \mathrm{pm}$ 4) $415 \mathrm{pm}$ Inductive effect involves 1) displacement of σ electrons 2) delocalisation of σ electrons 3) delocalisation of σ electrons 4) displacement of σ electrons 1) $4 \mathrm{kg} = 100 \mathrm{kg}$ The basicity of aniline is less than that of cyclohexylamina 1) $4 \mathrm{kg} = 100 \mathrm{kg}$	3) $(NH_4)_3 PO_4$ 4) $K_2 SO_4$ For a reversible reaction: $X_{(g)} + 3Y_{(g)} \rightleftharpoons 2Z_{(g)}$ $\Delta H = -40 \mathrm{kJ}$ the standard entropies of X , Y and Z are 60, 40 and 50. The temperature at which the above reaction attains equilibrium 1) $400 K$ 2) $500 K$ 3) $273 K$ 4) $373 K$ The radii of Na^+ and Cl^- ions are 95 pm and 181 pm respectively. The radii of Na^+ and N	3) $(NH_4)_3 PO_4$ 4) $K_2 SO_4$ For a reversible reaction: $X_{(g)} + 3Y_{(g)} \rightleftharpoons 2Z_{(g)}$ $\Delta H = -40 \mathrm{kJ}$ the standard entropies of X, Y and Z are $60, 40$ and $50 \mathrm{JK^{-1} mol^{-1}}$ The temperature at which the above reaction attains equilibrium is about 1) $400 K$ 2) $500 K$ 3) $273 K$ The radii of Na^+ and Cl^- ions are 95 pm and 181 pm respectively. The edge lerunit cell is 1) $276 \mathrm{pm}$ 2) $138 \mathrm{pm}$ 3) $552 \mathrm{pm}$ 4) $415 \mathrm{pm}$ Inductive effect involves 1) displacement of σ electrons 2) delocalisation of π electrons 3) delocalisation of σ electrons 4) displacement of π electrons The basicity of aniline is less than that of cyclohexylamine. This is due to 1) $+R$ effect of $-NH_2$ group 2) $-I$ effect of $-NH_2$ group	3) $(NH_4)_3 PO_4$ 4) K_2SO_4 For a reversible reaction : $X_{(g)} + 3Y_{(g)} \rightleftharpoons 2Z_{(g)}$ $\Delta H = -40 \mathrm{kJ}$ the standard entropies of X , Y and Z are 60, 40 and 50 JK ⁻¹ mol ⁻¹ respect The temperature at which the above reaction attains equilibrium is about 1) $400 K$ 2) $500 K$ 3) $273 K$ 4) $373 K$ The radii of Na^+ and Cl^- ions are 95 pm and 181 pm respectively. The edge length of I unit cell is 1) $276 \mathrm{pm}$ 2) $138 \mathrm{pm}$ 3) $552 \mathrm{pm}$ 4) $415 \mathrm{pm}$ Inductive effect involves 1) displacement of σ electrons 2) delocalisation of π electrons 3) delocalisation of σ electrons 4) displacement of π electrons The basicity of aniline is less than that of cyclohexylamine. This is due to 1) $+R$ effect of $-NH_2$ group 2) $-I$ effect of $-NH_2$ group

		Brand Committee Committee States		ting it in other medium with
41. Met	hyl b	romide is converted into e	thane by hea	ating it in ether medium with
		Al	2)	Zn
23 U.		Na	4)	Cu
42. Wh	ich of	the following compound i	s expected to	o be optically active?
		(CH ₃) ₂ CH CHO		are our our office
	. 3)	CH ₃ CH ₂ CHBr CHO	4)	CH ₃ CH ₂ CBr ₂ CHO
43. Wh	nich c	ycloalkane has the lowest	heat of comb	bustion per CH2 group?
		cyclopropane	2)) cyclobutane
.,,,	3)	cyclopentane) cyclohexane
44. Th	e cat	alyst used in the prepara	tion of an all	kyl chloride by the action of dry HCl on ar
	cohol		23	
1	1)		2)	FeCl ₃
, eet	3)	anhydrous $ZnCl_2$	4)	i) Cu
			1 10	
		eaction		
R	- X	$\frac{alcoholic}{KCN} \rightarrow A \frac{dilute}{HCl}$	$\rightarrow B$,	
th	e pro	duct B is		
	1	alkyl chloride	2	2) aldehyde
	3) carboxylic acid	4	4) ketone

400.00						The same of the sa		
46.	Which o	of the following co	mpound	l would i	not evolv	$re CO_2$ when treated with	NaHCO sale	.42
5%	1)	salicylic acid			2)	phenol	124affCO3 soit	auon
v	3)	benzoic acid			4)	4-nitro benzoic acid		e ⁿ ,
47.	By heat	ing phenol with	chlorofo	rm in a	lkali it	is converted into		
	1)					salicylaldehyde	10001	
	3)	anisole	9 1.1	٠.	4)	phenyl benzoate		
48.	When a compour	mixture of calc	ium ber	nzoate a	nd calc	ium acetate is dry disti	lled, the resu	ılting
	1)	acetophenone	55	S. 3	2)	benzaldehyde		. 18
	3)	benzophenone			4)	acetaldehyde	8 10	
49.	Which of	the following do	es not g	give ben	zoic acio	d on hydrolysis?		
	1)	phenyl cyanide	ere t		2)	benzoyl chloride		
	3)	benzyl chloride			4)	methyl benzoate		- 5%
50.	Which of	the following wo	ould und	lergo Ho		reaction to give a prima	ary amine ?	
		0	44	1 2 2				100
	721°	_ 11		1			1 (a)	
	1)	R-C-Cl		11	2)	RCONHCH3		1
. 4	3)	$RCONH_2$		2	4)	RCOOR		
	1.1					71		

51	Glucose co	ntains in	addition	to aldehyd	e group
----	------------	-----------	----------	------------	---------

- 1) one secondary OH and four primary OH groups
- 2) one primary OH and four secondary OH groups
- 3) two primary OH and three secondary OH groups
- 4) three primary OH and two secondary OH groups

52. A distinctive and characteristic functional group of fats is

1) a peptide group

2) an ester group

an alcoholic group

4) a ketonic group

2)
$$H_3 \stackrel{+}{N} - CH_2 - COOH$$

3)
$$H_2N - CH_2 - COOH$$

54. Insulin regulates the metabolism of

1) minerals

2) amino acids

3) glucose

4) vitamins

55. The formula mass of Mohr's salt is 392. The iron present in it is oxidised by KMnO₄ in acid medium. The equivalent mass of Mohr's salt is

1) 392

2) 31.6

3) 278

4) 156

The brown ring test for nitrates depends on

Acrolein test is positive for

the reduction of nitrate to nitric oxide
 oxidation of nitric oxide to nitrogen dioxide
 reduction of ferrous sulphate to iron
 oxidising action of sulphuric acid

				10 mm			107	
	1)	polysaccharides		2)	proteins			
	3)	oils and fats		4)	reducing sugars			
58.	An organ	nic compound which	produces a	bluish g	reen coloured flam	e on heati	ng in presence	
	1)	chlorobenzene		2)	benzaldehyde	36	100 mm	4 62 8 62
	3)	aniline		4)	benzoic acid	161		
	concentr	eaction $A+B\rightarrow C+B$ ration of B , the rations without altering tion is	te gets doub	bled. If	the concentration	n of Rie	increased by	
i	1)		3 1	2)	1	4	6.60	R
	3)	3 2		4)	$\frac{4}{3}$			1
0. 1		the following solution	ons will exh	ibit high	hest boiling point?	6.	2 8 ,	
		$0.01~\mathrm{M}~Na_2SO_{4_{\langle aq\rangle}}$			0.01 M KNO _{3 (aq)}		1	i G
14	3)	0.015 M urea (aq)		4)	0.015 M glucose _(a)	19)		
			(Space for I	Rough V	Work)			

15 A-1