COMMON ENTRANCE TEST - 2010

DATE	SUBJECT	TIME
29-04-2010	CHEMISTRY	02.30 PM to 03.50 PM
MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

MENTION YOUR	QUESTION BOOKLET DETAILS			
CET NUMBER	VERSION CODE	SERIAL NUMBER		
	A - 1	715377		

DOs:

- Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- This Question Booklet is issued to you by the invigilator after the 2nd Bell, i.e., after 02.30 p.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- Until the 3rd Bell is rung at 02.40 p.m. :
 - · Do not remove the seal/staple present on the right hand side of this question booklet.
 - . Do not look inside this question booklet.
 - · Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have four different options / choices.
- After the 3rd Bell is rung at 02.40 p.m., remove the seal/staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available options / choices given under each question.
 - Completely darken/shade the relevant circle with a BLUE OR BLACK INK BALLPOINT PEN against the question number on the OMR answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE OMR SHEET IS AS SHOWN BELOW:

- Please note that even a minute unintended ink dot on the OMR sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- After the last bell is rung at 03.50 p.m., stop writing on the OMR answer sheet and affix your LEPT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room Invigilator as it is.
- After separating and retaining the top sheet (KEA Copy), the Invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

SR - 49

Turn Over

CHEMISTRY

- 1. In the electrolytic refining of Zinc,
 - the impure metal is at the cathode.
 - 2) graphite is at the anode.
 - 3) acidified zinc sulphate is the electrolyte.
 - 4) the metal ion gets reduced at the anode.
- - 1) n = 10 to n = 1

2) n = 3 to n = 1

3) n = 2 to n = 1

- 4) n = 9 to n = 1
- 3. Consider the following gaseous equilibria with equilibrium constants ${\cal K}_1$ and ${\cal K}_2$ respectively.

$$SO_{2(\varepsilon)} + \frac{1}{2}O_{2(\varepsilon)} \implies SO_{3(\varepsilon)}$$

$$2SO_{3(g)} \rightleftharpoons 2SO_{2(g)} + O_{2(g)}$$

The equilibrium constants are related as

1)
$$2K_1 = K_2^2$$

2)
$$K_1^2 = \frac{1}{K_2}$$

3)
$$K_2^2 = \frac{1}{K_1}$$

4)
$$K_2 = \frac{2}{K_1^2}$$

- - 1) -100

2) -441

3) +100

- 4) +441
- 5. Which one of the following conversions involve change in both hybridization and shape?
 - 1) $NH_3 \longrightarrow NH_4^+$

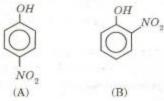
2) $CH_4 \longrightarrow C_2H_6$

3) $H_2O \longrightarrow H_3O^+$

4) $BF_3 \longrightarrow BF_4$

- 6. In chromite ore, the oxidation number of iron and chromium are respectively
 - 1) +3, +6

2) +3, +2


3) +2, +3

- 4) +2, +6
- 7. For the reversible reaction

$$A_{(e)} + B_{(e)} = C_{(e)} + D_{(e)} : \Delta G^0 = -350 \text{ kJ}.$$

Which one of the following statements is true?

- 1) Equilibrium constant is greater than one.
- 2) The entropy change is negative.
- 3) The reaction is thermodynamically not feasible.
- 4) The reaction should be instantaneous.
- Out of the below two compounds, the vapour pressure of (B) at a particular temperature is

- 1) lower than that of (A)
- 2) higher than that of (A)
- 3) same as that of (A)
- 4) higher or lower than (A), depending on the size of the vessel.
- The amount of heat evolved when 500 cm³ of 0.1 M HCl is mixed with 200 cm³ of 0.2 M NaOH is
 - 1) 1.292 kJ

2) 2.292 kJ

3) 3.392 kJ

- 4) 0.292 kJ
- 10. During the adsorption of krypton on activated charcoal at low temperature,
 - ΔH < 0 and ΔS < 0
- 2) $\Delta H > 0$ and $\Delta S < 0$
- 3) $\Delta H < 0$ and $\Delta S > 0$
- 4) $\Delta H > 0$ and $\Delta S > 0$

11.	The set		nbers for the out	termo	st electron for coppe	er in its ground state	
		3, 2, 2, + 1/2		2)	4, 1, 1, + 1/2		
	-3)	$4, 2, 2, +\frac{1}{2}$		4)	4, 0, 0, + 22		
12.	Peroxide	o ion					
	a) is	diamagnetic.					
	b) ha	s five completely	filled antibondi	ng m	olecular orbitals.		
	c) is	isoelectronic wit	h neon.				
	d) ha	s bond order one).				
	Which o	one of these is co	rrect?				
	1)	a), b) and d)		2)	d) and e)		
	3)	a) and d)		4)	a), b) and c)		
13.	Which o	ne of these is NO	OT true for benz	ene?			
	1)	There are three	e carbon-carbon	sing	e bonds and three c	arbon-carbon double	
	2)	It forms only or	ne type of monos	subst	ituted product.		
	3)	The bond angle	between the car	bon-	earbon bonds is 120°.		
	4)	The heat of hyd	drogenation of be	nzen	e is less than the the	eoretical value.	
14.	to precipis heate	pitate all the Ca+	² ions as calcium 0.56 g of <i>CaO</i> . ^r	cark	onate. The calcium o	m carbonate solution arbonate so obtained the mixture (atomic	
	1)	30.6		2)	75		
	- 3)	69.4		4)	25		
15.	For one	mole of an ideal	gas, increasing t	he te	mperature from 10°C	to 20°C	

- 1) increases the rms velocity by $\sqrt{2}$ times.
- 2) increases the average kinetic energy by two times.
- 3) increases both the average kinetic energy and rms velocity, but not significantly.
- 4) increases the rms velocity by two times.

		6	A-1
16.	Generally, the first ionization exceptions. One which is NOT a	energy increases along a period. But an exception is	t there are some
	1) Na and Mg	 N and O 	
	3) Be and B	4) Mg and Al	
17.	after adding 50 cm ³ of NaOH.	gainst 0.1 N NaOH solution. The titratic The remaining titration is completed ired for completing the titration is	by adding 0.5 N

- - 1) 10 cm3

2) 12 cm3

3) 10.5 cm3

4) 25 cm3

18. In which one of the following, does the given amount of chlorine exert the least pressure in a vessel of capacity 1 dm3 at 273K?

1) 0.071 g

2) 0.0355 g

3) 0.02 mole

- 4) 6.023×10^{21} molecules
- 19. Based on the first law of thermodynamics, which one of the following is correct?

For an adiabatic process : ΔU = -w

For an isochoric process : ΔU = -q

For a cyclic process: q = -w

4) For an isothermal process: q = +w '

20. For alkali metals, which one of the following trends is INCORRECT?

Ionization energy: Li > Na > K > Rb

Hydration energy: Li > Na > K > Rb

Atomic size : Li < Na < K < Rb

Density: Li < Na < K < Rb

25. In Kjeldahl's method, ammonia from 5 g of food neutralizes 30 cm³ of 0.1 N acid. The percentage of nitrogen in the food is

1) 8.4

10

2) 0.84

3) 1.68

4) 16.8

	 carbon has a higher affini 	ty towards oxidation than iron.	
	2) carbon monoxide formed i	s thermodynamically less stable tha	n ferric oxide.
		towards oxygen than carbon.	
	 free energy change for th that for ferric oxide. 	e formation of carbon dioxide is les	s negative than
27.	only organic product with its molecular	ound upon oxidation forms a carbo ular mass higher by 14 units. The or	
	18	0) 11.1 1	
	1) a primary alcohol	2) an aldehyde	
	3) a ketone	 a secondary alcohol 	
28.	The compound obtained when acetal exhibits	ldehyde reacts with dilute aqueous s	odium hydroxide
	1) optical isomerism		
	2) geometric isomerism		
	3) both optical and geometric	c isomerism	
	4) neither optical nor geome	tric isomerism	
29.	The activation energy for a real $2.303~{\rm RT~J~mol^{-1}}$. The ratio of the ratio	action at the temperature TK water constant to Arrhenius factor is	
	1) 10-9	2) 10 ⁻¹	
	3) 2×10^{-2}	4) 2×10 ⁻³	
30.	A dibromo derivative of an alkar hydrocarbon. The derivative is		rm an alicyclic
	1) 2, 2-dibromobutane	2) 1, 1-dibromopropane	

(Space for Rough Work)

4) 1, 2-dibromoethane

3) 1, 4-dibromobutane

31. Time required for 100 percent completion of a zero order reaction is

1) 2k

1

d

e

3) ah

0.023 g of sodium metal is reacted with 100 cm3 of water. The pH of the resulting solution

1) 11

2) 10

3) 12

4) 9

Which one of the following is wrongly matched?

- 1) $\left[Ni\left(CO\right)_{4}\right]$ neutral ligand 2) $\left[Cu\left(NH_{3}\right)_{4}\right]^{*2}$ square planar
- 3) $\left[Co\left(en\right)_{3} \right]^{*8}$ follows EAN rule 4) $\left[Fe\left(CN\right)_{6} \right]^{*8}$ $sp^{3}d^{2}$

34. Which one of the following conformations of cyclohexane is the least stable?

1) Boat

2) Half-chair

3) Chair

4) Twisted-boat

Which one of the following is a molecular crystal?

1) Quartz

2) Rock salt

3) Diamond

4) Dry ice

- - 1) pKa

2) pKa - Log 2

3) $pK_a + Log 2$

- 4) pK_a+2
- 37. Which one of the following has the most nucleophilic nitrogen?

- 4) NHCOCH₃
- 38. Chloroacetic acid is a stronger acid than acetic acid. This can be explained using
 - 1) -I effect

2) -M effect

3) +I effect

- 4) + M effect
- 39. The correct sequence of reactions to convert p-nitrophenol into quinol involves
 - 1) hydrolysis, diazotization and reduction
 - 2) reduction, diazotization and hydrolysis
 - 3) diazotization, reduction and hydrolysis
 - 4) hydrolysis, reduction and diazotization
- **40.** $CH_3CH_2Br \xrightarrow{Aq \ KOH} \Lambda \xrightarrow{KMnO_4/H^+} B \xrightarrow{NH_3} C \xrightarrow{Br_2} D$; "D" is
 - 1) CH3CONH9

2) CH₃Br

3) CHBr₃

4) CH3NH2

41. The letter 'D' in D-glucose signifies

	1)	dextrorotatory		
	2)	configuration at all chiral carl	oons	
	3)	configuration at a particular of	hiral c	arbon
	4)	that it is a monosaccharide		
42.	Reaction	of methyl bromide with aqueo	us sod	ium hydroxide involves
	1)	S _N 1 mechanism	2)	racemisation
	3)	$\mathrm{S_N}2$ mechanism	4)	inversion of configuration
43.	magnesi		pletely	used anhydrous magnesium chloride. The v converted into a Grignard reagent. The ined is
	1)	1×10 ⁻⁴	2)	5×10 ⁻⁴
	3)	1×10^{-5}	4)	5×10^{-5}
44.	Which o	ne of the following does NOT i	nvolve	coagulation?
	1)	Peptization		
	2)	Formation of delta regions		*
	3)	Clotting of blood by the use of	ferric	chloride
	4)	Treatment of drinking water b	y pota	sh alum
45.	In alkal	ine medium, alanine exists pred	lomina	ntly as/in
	1)	zwitterion	2)	anion
	3)	covalent form	4)	cation

is 0.59 V. The equilibrium constant for the reaction of the cell is

1) 1020

3) 1030

The standard emf of a galvanic cell involving 3 moles of electrons in its redox reaction

2) 1025

4) 1015

 sodium hydroxide solution Tollens' reagent one of the following statement Drying of oil involves hydromy Saponification of oil yields Refining of oil involves hydromy Addition of antioxidant to following data is obtained of the following data is obtained	4) 2, 4-DNPH nts is true? rolysis a diol. rdrogenation oil minimizes rancidity luring the first order therma	
 3) Tollens' reagent h one of the following statement 1) Drying of oil involves hydromy 2) Saponification of oil yields 3) Refining of oil involves hydromy 4) Addition of antioxidant to following data is obtained of the foll	4) 2, 4-DNPH nts is true? rolysis a diol. drogenation oil minimizes rancidity luring the first order therma blume and temperature. Total pressure in Pascal	l decomposition
th one of the following statement. 1) Drying of oil involves hydrology. 2) Saponification of oil yields. 3) Refining of oil involves hydrology. 4) Addition of antioxidant to following data is obtained do → B _[S] + C _[S] , at constant vol. 5. Time At the end of 10 minutes.	nts is true? rolysis a diol. drogenation oil minimizes rancidity luring the first order therma olume and temperature. Total pressure in Pascal	l decomposition
 Drying of oil involves hyde Saponification of oil yields Refining of oil involves hy Addition of antioxidant to following data is obtained demonstrated on the constant volume Time At the end of 10 minutes 	rolysis a diol. drogenation oil minimizes rancidity luring the first order therma olume and temperature. Total pressure in Pascal	l decomposition
 Saponification of oil yields Refining of oil involves by Addition of antioxidant to following data is obtained d →B_[g] +C_(g), at constant vo Time At the end of 10 minutes 	a diol. drogenation oil minimizes rancidity luring the first order therma blume and temperature. Total pressure in Pascal	l decomposition
 3) Refining of oil involves by 4) Addition of antioxidant to following data is obtained d →B_[g] + C_(s), at constant vo o. Time At the end of 10 minutes 	drogenation oil minimizes rancidity luring the first order therma blume and temperature. Total pressure in Pascal	l decomposition
4) Addition of antioxidant to following data is obtained d $\longrightarrow B_{[g]} + C_{(g)}, \text{ at constant vo}$ o. Time At the end of 10 minutes	oil minimizes rancidity luring the first order therma blume and temperature. Total pressure in Pascal	l decomposition
following data is obtained d $\longrightarrow B_{[g]} + C_{\{s\}}$, at constant vo o. Time At the end of 10 minutes	luring the first order therma blume and temperature. Total pressure in Pascal	l decomposition
$\longrightarrow B_{[g]} + C_{(s)}$, at constant voo. Time At the end of 10 minutes	Total pressure in Pascal	decomposition
$\longrightarrow B_{[g]} + C_{(s)}$, at constant voo. Time At the end of 10 minutes	Total pressure in Pascal	95
o. Time At the end of 10 minutes	Total pressure in Pascal	100 pt
At the end of 10 minutes	- Prince of the second	100 pt
1000	300	6.0
160 40 16		
After completion	200	5,50
ate constant in min-1 is		
1) 6.93	2) 0.0693	3.
3) 69.3	4) 0.00693	
ol X , forms a tribromo de	erivative. "X" is	
3) bromine in carbon tetrach	loride at 0°C.	
	 6.93 69.3 forms a tribromo de tribromine in water bromine in water bromine in carbon tetrachi potassium bromide solution 	 3) 69.3 4) 0,00693 ol X → forms a tribromo derivative. "X" is

- 51. The correct sequence of steps involved in the mechanism of Cannizzaro's reaction is
 - transfer of H⁻, transfer of H⁺ and nucleophilic attack
 - nucleophilic attack, transfer of H⁻ and transfer of H^{*}
 - electrophilic attack by OH, transfer of H and transfer of H
 - transfer of H⁺, nucleophilic attack and transfer of H⁻
- Which one of the following is an example for homogeneous catalysis?
 - 1) Manufacture of ammonia by Haber's process
 - Manufacture of sulphuric acid by contact process
 - Hydrogenation of oil
 - 4) Hydrolysis of sucrose in presence of dilute hydrochloric acid
- The empirical formula of a nonelectrolyte is $C_1H_2O_4$. A solution containing 6 g of the compound exerts the same osmotic pressure as that of 0.05 M glucose solution at the same temperature. The molecular formula of the compound is
 - C₃H₆O₃

C₂H₄O₂

3) C,H,O,

- 4) C.H.,O.
- 54. A white crystalline salt A reacts with dilute HCl to liberate a suffocating gas B and also forms a yellow precipitate. The gas B turns potassium dichromate acidified with dilute H,SO, to a green coloured solution C. A, B and C are respectively
 - 1) $Na_2S_2O_3$, SO_2 , $Cr_2(SO_4)$, 2) Na_2SO_3 , SO_2 , $Cr_2(SO_4)$,
- - Na₂SO₄, SO₂, Cr₂(SO₄),
 Na₂S, SO₂, Cr₂(SO₄),
- 55. Molecules of a noble gas do not possess vibrational energy because a noble gas
 - is chemically inert
- 2) is monoatomic

3) is diamagnetic

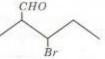
4) has completely filled shells

56. One dm³ solution containing 10^{-5} moles each of Cl^- ions and CrO_4^{-2} ions is treated with 10^{-4} mole of silver nitrate. Which one of the following observations is made?

$$[K_{SP} Ag_2 CrO_4 = 4 \times 10^{-12}]$$

- $\left[K_{SP} \ AgCl = 1 \times 10^{-10}\right]$
 - 1) Silver chromate gets precipitated first.
 - 2) Precipitation does not occur.
 - 3) Both silver chromate and silver chloride start precipitating simultaneously.
 - 4) Silver chloride gets precipitated first.
- 57. pH value of which one of the following is not equal to one?
 - 1) 0.05 M H₂SO₄
 - 2) 0.1 M HNO3
 - 3) 50 cm3 of 0.4 M HCl+50 cm3 of 0.2 M NaOH
 - 4) 0.1 M CH COOH
- 58. E_1, E_2 and E_3 are the emf values of the three galvanic cells respectively.
 - a) $Zn \mid Zn_{1M}^{*2} \mid \mid Cu_{0.1M}^{*2} \mid Cu$
 - b) $Zn \mid Zn_{1M}^{*2} \mid \mid Cu_{1M}^{*2} \mid Cu$
 - c) $Zn |Zn_{0.1M}^{+2}| |Cu_{1M}^{+2}| |Cu$

Which one of the following is true?


1) $E_n > E_n > E_1$

2) $E_x > E_3 > E_1$

3) $E_1 > E_3 > E_2$

4) $E_1 > E_2 > E_3$

59. The IUPAC name of

- 1) 3-bromo-2-methylbutanal
- 2) 2-methyl-3-bromohexanal
- 3) 3-bromo-2-methylpentanal
- 4) 2-methyl-3-bromobutanal
- 60. Which one of the following forms propanenitrile as the major product?
 - 1) Propyl bromide + alcoholic KCN
 - 2) Ethyl bromide + alcoholic KCN
 - 3) Ethyl bromide + alcoholic AgCN
 - 4) Propyl bromide + alcoholic AgCN