SUBJECT : CHEMISTRY	DAY-2
SESSION : AFTERNOON	TIME: 02.30 P.M. TO 03.50 P.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

MENTION YOUR	QUESTION BOO	KLET DETAILS
CET NUMBER	VERSION CODE	SERIAL NUMBER
	A - 1	633409

DOs:

- Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 2.30 p.m.
- The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 2.40 p.m., till then;
 - Do not remove the paper seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- This question booklet contains 60 questions and each question will have one statement and four distracters. (Four different options / choices.)
- After the 3rd Bell is rung at 2.40 p.m., remove the paper seal on the right hand side of this question booklet and
 check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by
 a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN
 against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- After the last bell is rung at 3.50 p.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

C

[Turn Over

1.	The proce	ess of zone refining is used	in the purificati	on of
	(1)	Al	(2)	Ge
	(3)	Cu	(4)	Ag
2.	The numb	per of water molecules pres	sent in a drop of	water weighing 0.018 gm is
	(1)	6.022×10^{26}	(2)	6.022×10^{23}
	(3)	6.022×10^{19}	(4)	6.022 ×10 ²⁰
3.	Empirical	formula of a compound	is CH ₂ O and it	s molecular mass is 90, the molecular
	formula o	f the compound is		458 9 E0 +1
	(1)	$C_3H_6O_3$	(2)	C ₂ H ₄ O ₂
	(3)	$C_6H_{12}O_6$	(4)	CH ₂ O
4.	Hybridise	ed states of carbon in Graph	nite and Diamon	d are respectively
	(1)	sp^3 , sp^3	(2)	sp ³ , sp ²
	(3)	sp ² , sp ²	(4)	sp ² , sp ³

The mass of 112 cm³ of NH₃ gas at STP is

(1) 0.085 g

(2) 0.850 g

(3) 8.500 g

(4) 80.500 g

		me of CH ₃ - CH - CH ₂ - CH - OH COO	Н	
	(1)	4-hydroxy 1 methyl pentanoic a	cid	
	(2)	4-hydroxy 2 methyl pentanoic a	cid	
	(3)	2-hydroxy 4 methyl pentanoic a	cid	
	(4)	2-hydroxy 2 methyl pentanoic a	icid	
. A	alkali me	tals have negative reduction pote	ntial and	
	(1)	Oxidising agents	(2)	Lewis bases
	(3)	Reducing agents	(4)	Electrolytes
	Which of	the following gases has the high		of RMS-velocity at 298 K?
. 1	vinch of		4	1532929
. 1	(1)	CH ₄	(2)	СО

Cycloalkane formed when 1, 4-dibromopentane is heated with Sodium is

- (1) Methyl cyclobutane
- (2) Cyclopentane

(3) Cyclobutane

(4) Methyl cyclopentane

10.	In the rea	ction, 2FeSO ₄ + H ₂	$SO_4 + H_2O_2 \rightarrow Fe_2(SO_3)$	$_{4})_{3} + 2H_{2}O$, the oxidizi	ng agent is
	(1)	FeSO ₄	(2)	H ₂ SO ₄	
	(3)	H_2O_2	(4)	Both H ₂ SO ₄ and H ₂ O	2
11.	Given T	hermochemical equi	vation, $2H_{2(g)} + O_{2(g)}$	$\rightarrow 2H_2O_{(f)}; \Delta H = -57$	1.6 kJ. Heat of
	(1)	- 571.6 kJ	(2)	+ 571.6 kJ	

12. In Buna-S, the symbol 'Bu' stands for

(1) 1-Butene

(2)n-Butene

2-Butene

Butadiene (4)

13. The electronic configuration of Cu2+ ion is

[Ar] 3d8 4s1 (1)

(2) [Ar] 3d9 4s0

[Ar] 3d7 4s2 (3)

(4) [Ar] 3d8 4s0

The yield of the products in the reaction, A_{2(g)} + 2B_(g) \(\bigcup C_(g) + Q. kJ would be higher at

(1) High temperature and high pressure

(2) High temperature and low pressure

(3) Low temperature and high pressure

(4) Low temperature and low pressure

15. Mesomeric effect involves

(1) delocalisation of π -electrons

(2) delocalisation of σ-electrons

(3) partial displacement of electrons

(4) delocalisation of π and σ electrons

16. Which one of the following sets of ions represents the collection of isoelectronic species?

(1) K+, Cl-, Mg2+, Sc3+

(2) Na+, Ca2+, Sc3+, F

(3) K+, Ca2+, Sc3+, CI-

(4) Na+, Mg2+, Al3+, Cl-

17. Adsorption theory is applicable for

(1) Homogeneous catalysis

(2) Heterogeneous catalysis

(3) Autocatalysis

(4) Induced catalysis

18.	Methane o	can be converted i	nto Ethane by the reaction	ns			
	(1)	Chlorination foll	lowed by the reaction wit	h alcoholic KOH.			
	(2)	Chlorination foll	lowed by the reaction wit	th aqueous KOH.			
	(3)	Chlorination followed by Wurtz reaction.					
	(4)	Chlorination foll	lowed by decarboxylation	1.			
19.	Intramole	cular Hydrogen b	onding is formed in				
	(1)	H ₂ O	(2)	Salicylaldehyde			
	(3)	NH ₃	(4)	Benzophenone			
			ι	de vice a de si			
20.			onverted into a product in 100 minutes ?	in a first order reaction in 25 minu	ites,		
	(1)	93.75%	(2)	87.5%			
	(3)	75%	(4)	100%			
21.	The num	ber of optical ison	ners of the compound CH	I ₃ – CHBr – CHBr – COOH is			
	(1)	0	(2)				
	(3)	3	(4)	4			
_			Space For Rough W	ork .			

(3) the rate of (1) (2) (3) (4)	Calcination of reaction increases with rise in te increase in number of activated i increase in energy of activation. decrease in energy of activation.		are because of
(1) (2) (3)	increase in number of activated increase in energy of activation.		
(1) (2) (3)	increase in number of activated increase in energy of activation.		
(2)	increase in energy of activation.	molecul	es.
(3)			
1110000	decrease in energy of activation.		
(4)			
(,)	increase in the number of effecti	ve collis	sions.
eso con	pounds do not show optical activ	ity becar	use
(1)	they do not contain chiral carbon	atoms.	
(2)	they have non-super imposable n	nirror in	nages.
(3)	they contain plane of symmetry.		
(4)	they do not contain plane of sym	metry.	
hen form	nic acid is heated with concentrate	ed H ₂ SC	4, the gas evolved is
(1)	only CO ₂	(2)	only 'CO'
(3)	a mixture of 'CO' and 'CO2'	(4)	a mixture of 'SO2' and 'CO2'
	(1) (2) (3) (4) nen form	 they do not contain chiral carbon they have non-super imposable in they contain plane of symmetry. they do not contain plane of symmetry. they do not contain plane of symmetry. only CO₂ a mixture of 'CO' and 'CO₂' 	 (2) they have non-super imposable mirror in (3) they contain plane of symmetry. (4) they do not contain plane of symmetry. nen formic acid is heated with concentrated H₂SO (1) only CO₂ (2)

22. When limestone is heated, CO2 is given off. The metallurgical operation is

26.		are coefficient of a reaction is rate of reaction is increased by	2'. When t	emperature is increased from 30 °C to
	(1)	60 times	(2)	64 times
	(3)	150 times	(4)	400 times
27.	Conversion	on of benzene to acetophenone c	an be brou	ght by
	(1)	Wurtz reaction	(2)	Wurtz-Fittig's reaction
	(3)	Friedel Crafts alkylation	(4)	Friedel Crafts acylation
28.	Excess of	FPCl ₅ reacts with concentrated I	H ₂ SO₄ givi	ing
	(1)	Chlorosulphuric acid	(2)	Sulphurous acid
	(3)	Sulphuryl chloride	(4)	Thionyl chloride
29.	An exam	ple for a neutral buffer is		
	(1)	Ammonium hydroxide and A	mmonium	chloride
	(2)	Acetic acid and Sodium aceta	ite	
	(3)	Acetic acid and Ammonium I	nydroxide	
	(4)	Citric acid and Sodium citrate		
-		Space Fo	or Rough V	Vork

	(1)	Chain conformation	(2)	Boat conformation
	(3)	Cis conformation	(4)	E-z form
31.	Which of	the following is employed in	flash tubes ir	n photography ?
	(1)	Ar	(2)	Ne
	(3)	Kr	(4)	Xe
32.	Conjugat	e base of H ₂ PO ₄ is		
	(1)	HPO ₄	(2)	HPO 4
	(3)	H ₃ PO ₄	(4)	PO 4
33.	An alkyl		Sodium in e	ther to form 4, 5-diethyl octane, the
	(1)	CH ₃ (CH ₂) ₃ Br	(2)	CH ₃ (CH ₂) ₅ Br
	(3)	CH ₃ (CH ₂) ₃ CH(Br)CH ₃	(4)	CH3-(CH2)2-CH(Br)-CH2-CH3

34. Which one of the following shows highest magnetic moment

(1) Fe²⁺

(2) CO²⁺

(3) Cr³⁺

(4) Ni²⁺

35. The emf of a galvanic cell constituted with the electrodes Zn^{2+} | Zn (-0.76 V) and Fe^{2+} | Fe(-0.41 V) is

(1) - 0.35 V

(2) + 1.17 V

(3) + 0.35 V

(4) -1.17 V

36. Which of the following pairs are correctly matched?

	Reactants	Products		g 2
I.	$RX + AgOH_{(aq)}$	RH		*
II.	RX + AgCN _(alco)	RNC		
Ш.	$RX + KCN_{(alco)}$	RNC		
IV.	RX + Na _(ether)	R-R		
	(1) I alone		(2)	I and II
	(3) II and III		(4)	II and IV

- 37. In a transition series, with the increase in atomic-number, the paramagnetism
 - (1) increases gradually
 - (2) decreases gradually
 - (3) first increases to a maximum and then decreases
 - (4) first decreases to a minimum and then increases

38.	Identify a	species which is 'NOT' a	Bronsted	acid b	ut a Lewis acid.
	(1)	BF ₃		(2)	H ₃ O
	(3)	NH ₃		(4)	HC <i>l</i>
39.	The comp	ound formed when calciu	m acetate	and ca	lcium formate is dry distilled.
	(1)	Acetone		(2)	Acetaldehyde
	(3)	Benzaldehyde		(4)	Acetophenone
40.	d ² sp ³ hyb	ridisation of the atomic or	bitals give	es	
	(1)	Square planar structure		(2)	Triangular structure
	(3)	Tetrahedral structure		(4)	Octahedral structure
41.	The pH o	f 10 ⁻⁸ M HCl solution is			
	(1)	8		(2)	6.9586
	(3)	More than 8		(4)	Slightly more than 7
		Spo	ace For Re	ough W	/ork

		Space For E	Panah W	ork	
	(3)	O ₂	(4)	N ₂	
	(1)	H ₂ *	(2)	He ₂ ⁺	
46.	Which of	the following is diamagnetic?			
	(3)	Geometrical isomers	(4)	Optical isomers	
	(1)	Functional isomers	(2)	Position isomers	1
45.	Acetone	and Propanal are			
	(3)	Osmotic pressure	(4)	Lowering of vapour pressure	
	(1)	Elevation in boiling point	(2)	Depression in freezing point	
44.	Which of	the following is 'NOT' a colligati	ve prope	erty ?	
n	(3)	it is a negatively charged ion.	(4)	it is a positively charged ion.	
	(1)	it is a small molecule.	(2)	it has an unshared electron pair.	
43.	A group	of atoms can function as a ligand o	nly whe	n	
		en e			1
	(3)	p-nitrophenol	(4)	p-cresol	
	(1)	Phenol	(2)	o-cresol	
42.	Which of	the following is strongly acidic?			

					elative lowering in vapour pressure
	(1)	0.05	(2)	0.04
	(3)	0.02	(4	1)	0.01
48. T	he reag	ent used to distinguish between a	cetaldeh	yd	e and benzaldebyde is
	(1)	Tollen's reagent	(2		Fehling's solution
	(3)	2-4-dinitrophenyl hydrazine	(4)		Semicarbazide
	(1) (2)	high density of metals high polish on the surface of met	als		
	0351200	high polish on the surface of met			
		reflection of light by mobile elect	rons		
	(4)	chemical inertness of metals			
Whi	ch of th	ne following aqueous solutions wi	ll exhib	it h	igheet helling
	(1) (0.01 M urea	(2)		01 M KNO ₃
	(3) 0	0.01 M Na ₂ SO ₄	(4)		015 M C ₆ H ₁₂ O ₆

	of the following	gives am	ine on heating w	ith amide?						
	Br ₂ in aqueous k	OH	(2)	Br ₂ in alcoholic K	OH					
(1)	Cl ₂ in Sodium		(4)	Sodium in Ether						
2. The numb	per of antibonding	g electron	s present in O_2^-	molecular ion is	41					
(1)	8		(2)	6						
(3)	5	- 1	(4)	4						
53. The proc	ess is spontaneou	is at the g	given temperature	e, if						
(1)				ΔH is -ve and 2						
(3)		ΔH is +ve and ΔS is +ve	10.00	ΔH is +ve and A	∆S is equal to zero					
54. Glucose	Glucose when reduced with HI and Red Phosphorus gives									
(1)			(2)	n-neptane						
(3			(4) n-octane						
55. The sta	ability of a Lyoph	obic coll	oid is due to							
	Adsorption (of covaler	nt molecules on t	he colloid						
(2) The size of t	he partic	les		(
100	3) The charge									
	4) Tyndall effe	ect								

(1)	Oleates	(2		tain higher percentage of	
(3)	Stearates	(4			
57. Which sol?	of th	he following cation	ions will have minimu	m	flocculation value for arsenic su	lphide
(1		Na ⁺	(2)		Mg ²⁺	
(3) (Ca ²⁺			Al ³⁺	
58. The val	ue of	f entropy of solar	System is			
(1)		ncreasing	(2)		decreasing	
(3)	cc	onstant	(4)		zero	
59. In face c	entre	ed cubic lattice, a	Unit cell is show t		lly by how many unit cells ?	
(1)	6	, u	(2)			
(3)	2		(4)			
0. The numb	er o	f disulphide linka	ages present in Insulin			
(1)	4		(2)			
(3)	2		(4)			
			7		51 5 0 5s	

A-1