2014

SUBJECT	: CHEMISTRY	DAY-2
SESSION	: AFTERNOON	TIME: 02.30 P.M. TO 03.50 P.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

QUESTION BOOKLET DETAILS				
VERSION CODE	SERIAL NUMBER			
A-1	751905			
	The second secon			

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell Le., after 2.30 p.m.
- The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 2.40 p.m., till then;
 - Do not remove the paper seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - . Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- This question booklet contains 60 questions and each question will have one statement and four distracters.
 (Four different options / choices.)
- After the 3rd Bell is rung at 2.40 p.m., remove the paper seal on the right hand side of this question booklet and
 check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by
 a complete test booklet. Read each item and start answering on the OMR answer sheet.
- During the subsequent 70 minutes:
 - · Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN
 against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- After the last bell is rung at 3.50 p.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

25 cm³ of oxalic acid completely neutralised 0.064 g of sodium hydroxide. Molarity of the oxalic acid solution is
 (1) 0.045
 (2) 0.032

OVER 1 (3) 1 0.064 SHATT MERCEARE MODE (4) 1 0.015 OT

- 2. The statement that is NOT correct is
 - (1) Energies of stationary states in hydrogen like atoms is inversely proportional to the square of the principal quantum number.
 - (2) The radius of the first orbit of He⁺ is half that of the first orbit of hydrogen atom.
 - (3) Angular quantum number signifies the shape of the orbital.
 - (4) Total number of nodes for 3s orbital is three.
- 3. For the equilibrium:

CaCO_{3(s)} CaO_(s) + CO_{2(g)}; K_p = 1.64 atm at 1000 K

50 g of CaCO₃ in a 10 litre closed vessel is heated to 1000 K. Percentage of CaCO₃ that remains unreacted at equilibrium is

(Given $R = 0.082 L atm K^{-1} mol^{-1}$)

(1) 50 ERITORIAN OF SHOTE

) 40 (4) 60

- 4. Conversion of oxygen into ozone is non-spontaneous at
 - (1) high temperature

(2) low temperature

(3) all temperatures

(4) room temperature

of off the sector than to work SMO and no MORESTANDER REALISING

- 5. Density of carbon monoxide is maximum at
 - (1) 0.5 atm and 273 K
- 4 atm and 500 K (2)
- (3) 2 atm and 600 K
- 6 atm and 1092 K (4)
- 10. Carbocation as an intermediate is likely to be formed in the reaction The acid strength of active methylene group in
 - (a) CH3COCH2COOC3H5
 - (b) CH₃COCH₂COCH₃
 - (c) C₂H₆OOCCH₂COOC₂H₆ decreases as appointed to the control of the cont
 - (1) a>b>c
- (a) c>a>b
- (3) a>c>b

11. For an ideal blomy liquid mixmun

- A metallic oxide reacts with water to form its hydroxide, hydrogen peroxide and also liberates oxygen. The metallic oxide could be (2) $Na_{2}O_{2}^{-}$ $OA_{1}O = 2A_{2}$ (8)
 - KO.

(3) CaO

- (4) Li₂O

Y can be obtained by Etard's reaction, Z undergoes disproportionation reaction with concentrated alkali. X could be

E* for the cell is approximately.

9.	Gold	67.44	2-	-
· ·	CHOIC	501	150	not

- (1) a lyophobic colloid
- (3)a macro molecular colloid
- Density of curbon monocride is maximum at negatively charged colloid
 - (4) a multimolecular colloid

10. Carbocation as an intermediate is likely to be formed in the reaction :

- 6. The acid strength of scave methyless group in Acetone + HCN $\xrightarrow{\text{OH}}$ acetonecyanohydrin H2000, H200 H2 (a)

 Hexane $\xrightarrow{\text{Anhy. A/Cl}_3 / \text{HC}l}$ 2-methyl pentane
- (2)
- Propene + $Cl_2 \xrightarrow{h\nu} 2$ -chloropropane 22-chloropropane (5) (3)
- Ethylbromide + Aq KOH $\xrightarrow{\Delta}$ ethyl alcohol

11. For an ideal binary liquid mixture

(1)
$$\Delta H_{(mix)} = 0$$
; $\Delta S_{(mix)} < 0$

(1)
$$\Delta H_{(mix)} = 0$$
; $\Delta S_{(mix)} < 0$ (2) $\Delta S_{(mix)} > 0$; $\Delta G_{(mix)} < 0$ (3) $\Delta S_{(mix)} = 0$; $\Delta G_{(mix)} = 0$ (4) $\Delta V_{(mix)} = 0$; $\Delta G_{(mix)} > 0$

(3)
$$\Delta S_{(mix)} = 0$$
; $\Delta G_{(mix)} = 0$

(4)
$$\Delta V_{(mix)} = 0$$
; $\Delta G_{(mix)} > 0$

X Ozonolysia + Y + Z

12. For hydrogen - oxygen fuel cell at one atm and 298 K

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(f)}; \Delta G^{\circ} = -240 \text{ kJ}$$

E° for the cell is approximately,

(1) 1.24 V

(2) 1.26 V 1000 X I talks between

(3) 2.48 V

(4) 2.5 V

13. Which one of these is not known ?

(1) CuI₂ HO = HO

(3) CuCl₂

4.4	rent.		1000	1000			0.47
14.	The	COL	rect	sta	ter	nen	15

- The extent of actinoid contraction is almost the same as lanthanoid contraction. (1)
- Ce+4 in aqueous solution is not known. (2)
- The earlier members of lanthanoid series resemble calcium in their chemical (3) properties. O-E-nation (2)
- In general, lanthanoids and actinoids do not show variable oxidation states. (4)

15. P
$$\frac{1. \text{ CH}_3\text{MgBr}}{2. \text{ H}_3\text{O}^+}$$
 R $\frac{1. \text{ dil. NaOH}}{2. \Delta}$ 4-methylpent-3-en-2-one

duoi . iog k

Pis

(I) ethanamine

- (3) propanone
- (2) ethanal (4) ethanal (5)

(1) ethanol

- ethane |-|con | (20,5) (4)
- iodoethene

(1) (CH₁)₁C - CH₂OH

HO. reduction

- (2) (CH₃),CH CH₂OH
- (2) reduction, nitration, brownings
- (3) CH₃-CH -CH₂-CH₃ (4) CH₃-CH-CH₂-CH₂-CH₃

OH (7)

The IUPAC name of 'B' is

- (1) 2-methylbutan-3-ol
- (2) Pentan-2-ol salvagorg
- (3) 3-methylbutan-2-ol (4) 2-methylbutan-2-ol
- 19. For Freundlich isotherm a graph of $\log \frac{X}{m}$ is plotted against $\log P$. The slope of the line and its y-axis intercept, respectively corresponds to
 - (1) $\log \frac{1}{n}$, k

(2) $\log \frac{1}{n}$, $\log k$

- (3) $\frac{1}{n}$, k innerto (5) (4) $\frac{1}{n}$, $\log k$ seimmando (1) snowagong (6)
- 20. A plot of $\frac{1}{r}$ Vs. k for a reaction gives the slope -1×10^4 K. The energy of activation for the reaction is

(Given $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)

(1) 1.202 kJ mol-1

(2) 83.14 kJ mol⁻¹ (4) 12.02 J mol⁻¹

(3) 8314 J mol-1

- 21. The IUPAC name of the complex ion formed when gold dissolves in aquaregia is
 - tetrachloridoaurate(I) (2)
- dichloridoaurate(III)
 - tetrachloridoaurate(III)
- tetrachloridoaurate(II) (4)
- 22. The correct sequence of reactions to be performed to convert benzene into m-bromoaniline is
 - bromination, nitration, reduction
- (2) reduction, nitration, bromination
- (3) nitration, reduction, bromination
- (4) nitration, bromination, reduction

23.
$$\bigcirc C_6H_5COCI/base \times X$$
 Nitration Y (major product) Y is $\bigcirc C_6H_5COCI/base \times X$ Nitration Y (major product) $\bigcirc C_6H_5COCI/base \times X$ Nitration Y (major product) $\bigcirc C_6H_5COCI/base \times X$ Nitration Y (major product) $\bigcirc C_6H_5COCI/base \times X$

(2)
$$O_2N - O - COO - O - NO_2$$

(4)
$$O_2N - O - COO - O$$

- 24. $A_{(g)} \xrightarrow{\Delta} P_{(g)} + Q_{(g)} + R_{(g)}$, follows first order kinetics with a half life of 69.3 s at 500 °C. Starting from the gas 'A' enclosed in a container at 500 °C and at a pressure of 0.4 atm, the total pressure of the system after 230 s will be 2 to remar to g (38) at many (2) alom off Jug moons
 - 1.32 atm (1)

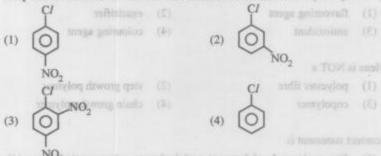
1.12 atm

1.15 atm (3)

(4) 1.22 atm

25.
$$MnO_2 + HCl \xrightarrow{\Delta} A_{(g)}$$

$$A_{(g)} + F_{2(excess)} \xrightarrow{573 \text{ K}} B_{(g)}$$


$$B_{(f)} + U_{(g)} \longrightarrow C_{(g)} + D_{(g)}$$

The gases A, B, C and D are respectively

- (1) Cl₂, C/F₃, UF₆, C/F (2) O₂, O₂F₂, U₂O₃, OF₂
- (3) Cl₂, ClF, UF₆, ClF₃ (4) O₂, OF₂, U₂O₃, O₂F₂

(1) C ₆ H ₅ CH ₃ (2) C ₆ H ₆ (3) C ₆ H ₅ CH(OH)CH ₃ (4) C ₆ H ₅ C = CH 27. One mole of ammonia was completely absorbed in one litre solution each of (a) IM HCI, (b) IM CH ₃ COOH and (c) IM H ₂ SO ₄ at 298 K. The decreasing order for the pH of the resulting solutions is (Given K _b (NH ₃) = 4.74) (1) a>b>c (2) c>b>a (3) b>c>a (4) b>a>c 28. 5.5 mg of nitrogen gas dissolves in 180 g of water at 273 K and one atm pressure due to nitrogen gas. The mole fraction of nitrogen in 180 g of water at 5 atm nitrogen pressure is approximately (1) 1×10 ⁻⁵ (2) 1×10 ⁻⁴ (3) 1×10 ⁻⁶ (4) 1×10 ⁻³ 29. 50 cm ³ of 0.04 M K ₂ Cr ₂ O ₇ in acidic medium oxidizes a sample of H ₂ S gas to sulphur. Volume of 0.03 M KMnO ₄ required to oxidize the same amount of H ₂ S gas to sulphur, in acidic medium is (1) 80 cm ³ (2) 120 cm ³ (3) 60 cm ³ (4) 90 cm ³	26.	Acetophe	none cannot	be prepared	easily sta	rting fro				
27. One mole of ammonia was completely absorbed in one litre solution each of (a) 1M HCI, (b) 1M CH ₃ COOH and (c) 1M H ₂ SO ₄ at 298 K. The decreasing order for the pH of the resulting solutions is (Given K _b (NH ₃) = 4.74) (1) a > b > c (2) c > b > a (3) b > c > a (4) b > a > c 28. 5.5 mg of nitrogen gas dissolves in 180 g of water at 273 K and one atm pressure due to nitrogen gas. The mole fraction of nitrogen in 180 g of water at 5 atm nitrogen pressure is approximately (1) 1 × 10 ⁻⁵ (2) 1 × 10 ⁻⁴ (3) 1 × 10 ⁻⁶ (4) 1 × 10 ⁻³ 29. 50 cm ³ of 0.04 M K ₂ Cr ₂ O ₇ in acidic medium oxidizes a sample of H ₂ S gas to sulphur. Volume of 0.03 M KMnO ₄ required to oxidize the same amount of H ₂ S gas to sulphur, in acidic medium is (1) 80 cm ³ (2) 120 cm ³ (3) 60 cm ³ (4) 90 cm ³		(1)	C ₆ H ₅ CH ₃		cust Y	(2)	C ₆ H ₆			
 27. One mole of ammonia was completely absorbed in one litre solution each of (a) 1M HCI, (b) 1M CH₃COOH and (c) 1M H₂SO₄ at 298 K. The decreasing order for the pH of the resulting solutions is (Given K_b(NH₃) = 4.74) (1) a > b > c (2) c > b > a (3) b > c > a (4) b > a > c 28. 5.5 mg of nitrogen gas dissolves in 180 g of water at 273 K and one atm pressure due to nitrogen gas. The mole fraction of nitrogen in 180 g of water at 5 atm nitrogen pressure is approximately (1) 1 × 10⁻⁵ (2) 1 × 10⁻⁴ (3) 1 × 10⁻⁶ (4) 1 × 10⁻³ 29. 50 cm³ of 0.04 M K₂Cr₂O₇ in acidic medium oxidizes a sample of H₂S gas to sulphur. Volume of 0.03 M KMnO₄ required to oxidize the same amount of H₂S gas to sulphur, in acidic medium is (1) 80 cm³ (2) 120 cm³ (3) 60 cm³ (4) 90 cm³ 		(3)	C ₆ H ₅ CH(O	H)CH ₃		(4)	$C_6H_5C = C$	Н		
(a) IM HCI, (b) IM CH ₃ COOH and (c) tM H ₂ SO ₄ at 298 K. The decreasing order for the pH of the resulting solutions is (Given K _b (NH ₃) = 4.74) (1) a > b > c (2) c > b > a (3) b > c > a (4) b > a > c 28. 5.5 mg of nitrogen gas dissolves in 180 g of water at 273 K and one atm pressure due to nitrogen gas. The mole fraction of nitrogen in 180 g of water at 5 atm nitrogen pressure is approximately (1) 1 × 10 ⁻⁵ (2) 1 × 10 ⁻⁴ (3) 1 × 10 ⁻⁶ (4) 1 × 10 ⁻³ 29. 50 cm ³ of 0.04 M K ₂ Cr ₂ O ₇ in acidic medium oxidizes a sample of H ₂ S gas to sulphur. Volume of 0.03 M KMnO ₄ required to oxidize the same amount of H ₂ S gas to sulphur, in acidic medium is (1) 80 cm ³ (2) 120 cm ³ (3) 60 cm ³ (4) 90 cm ³										
(Given K _b (NH ₃) = 4.74) (1) a > b > c (2) c > b > a (3) b > c > a (4) b > a > c 28. 5.5 mg of nitrogen gas dissolves in 180 g of water at 273 K and one atm pressure due to nitrogen gas. The mole fraction of nitrogen in 180 g of water at 5 atm nitrogen pressure is approximately (1) 1 × 10 ⁻⁵ (2) 1 × 10 ⁻⁴ (3) 1 × 10 ⁻⁶ (4) 1 × 10 ⁻³ 29. 50 cm ³ of 0.04 M K ₂ Cr ₂ O ₇ in acidic medium oxidizes a sample of H ₂ S gas to sulphur. Volume of 0.03 M KMnO ₄ required to oxidize the same amount of H ₂ S gas to sulphur, in acidic medium is (1) 80 cm ³ (2) 120 cm ³ (3) 60 cm ³ (4) 90 cm ³	27.							litre solu	tion each	of
(Given K _b (NH ₃) = 4.74) (1) a > b > c (2) c > b > a (3) b > c > a (4) b > a > c 28. 5.5 mg of nitrogen gas dissolves in 180 g of water at 273 K and one atm pressure due to nitrogen gas. The mole fraction of nitrogen in 180 g of water at 5 atm nitrogen pressure is approximately (1) 1 × 10 ⁻⁵ (2) 1 × 10 ⁻⁴ (3) 1 × 10 ⁻⁶ (4) 1 × 10 ⁻³ 29. 50 cm ³ of 0.04 M K ₂ Cr ₂ O ₇ in acidic medium oxidizes a sample of H ₂ S gas to sulphur. Volume of 0.03 M KMnO ₄ required to oxidize the same amount of H ₂ S gas to sulphur, in acidic medium is (1) 80 cm ³ (2) 120 cm ³ (3) 60 cm ³ (4) 90 cm ³		The decre	easing order f	or the pH of	the resul	ting sol	utions is			
 (3) b>c>a (4) b>a>c 28. 5.5 mg of nitrogen gas dissolves in 180 g of water at 273 K and one atm pressure due to nitrogen gas. The mole fraction of nitrogen in 180 g of water at 5 atm nitrogen pressure is approximately (1) 1×10⁻⁵ (2) 1×10⁻⁴ (3) 1×10⁻⁶ (4) 1×10⁻³ 29. 50 cm³ of 0.04 M K₂Cr₂O₂ in acidic medium oxidizes a sample of H₂S gas to sulphur. Volume of 0.03 M KMnO₄ required to oxidize the same amount of H₂S gas to sulphur, in acidic medium is (1) 80 cm³ (2) 120 cm³ (3) 60 cm³ (4) 90 cm³ 										
 28. 5.5 mg of nitrogen gas dissolves in 180 g of water at 273 K and one atm pressure due to nitrogen gas. The mole fraction of nitrogen in 180 g of water at 5 atm nitrogen pressure is approximately 1 × 10⁻⁵ 1 × 10⁻⁶ 1 × 10⁻³ 29. 50 cm³ of 0.04 M K₂Cr₂O₇ in acidic medium oxidizes a sample of H₂S gas to sulphur. Volume of 0.03 M KMnO₄ required to oxidize the same amount of H₂S gas to sulphur, in acidic medium is 80 cm³ 1 × 10⁻⁶ 29. 120 cm³ 30 cm³ 40 90 cm³ 40 90 cm³ 		(1)	a>b>c			(2)	c > b > a			
 28. 5.5 mg of nitrogen gas dissolves in 180 g of water at 273 K and one atm pressure due to nitrogen gas. The mole fraction of nitrogen in 180 g of water at 5 atm nitrogen pressure is approximately 1 × 10⁻⁵ 1 × 10⁻⁶ 1 × 10⁻³ 29. 50 cm³ of 0.04 M K₂Cr₂O₇ in acidic medium oxidizes a sample of H₂S gas to sulphur. Volume of 0.03 M KMnO₄ required to oxidize the same amount of H₂S gas to sulphur, in acidic medium is 80 cm³ 1 × 10⁻⁶ 120 cm³ 90 cm³ 90 cm³ 		(3)	b>c>a							
 28. 5.5 mg of nitrogen gas dissolves in 180 g of water at 273 K and one atm pressure due to nitrogen gas. The mole fraction of nitrogen in 180 g of water at 5 atm nitrogen pressure is approximately 1 × 10⁻⁵ 1 × 10⁻⁶ 1 × 10⁻³ 29. 50 cm³ of 0.04 M K₂Cr₂O₇ in acidic medium oxidizes a sample of H₂S gas to sulphur. Volume of 0.03 M KMnO₄ required to oxidize the same amount of H₂S gas to sulphur, in acidic medium is 80 cm³ 1 × 10⁻⁶ 29. 120 cm³ 30 cm³ 40 90 cm³ 40 90 cm³ 	-									
(1) 1×10 ⁻³ (2) 1×10 ⁻⁴ (3) 1×10 ⁻⁶ (4) 1×10 ⁻³ 29. 50 cm ³ of 0.04 M K ₂ Cr ₂ O ₇ in acidic medium oxidizes a sample of H ₂ S gas to sulphur. Volume of 0.03 M KMnO ₄ required to oxidize the same amount of H ₂ S gas to sulphur, in acidic medium is (1) 80 cm ³ (2) 120 cm ³ (3) 60 cm ³ (4) 90 cm ³		5.5 mg o nitrogen	f nitrogen ga gas. The mol	s dissolves i e fraction of	n 180 g	of water	at 273 K and	d one atm p	ressure du	
 29. 50 cm³ of 0.04 M K₂Cr₂O₇ in acidic medium oxidizes a sample of H₂S gas to sulphur. Volume of 0.03 M KMnO₄ required to oxidize the same amount of H₂S gas to sulphur, in acidic medium is (1) 80 cm³ (2) 120 cm³ (3) 60 cm³ (4) 90 cm³ 		(1)	1×10^{-5}			(2)	1×10^{-4}			
Volume of 0.03 M KMnO ₄ required to oxidize the same amount of H ₂ S gas to sulphur, in acidic medium is (1) 80 cm ³ (2) 120 cm ³ (3) 60 cm ³ (4) 90 cm ³		(3)	1×10^{-6}			(4)	1×10^{-3}			
(3) 60 cm ³ O ₂ U = 40 (0) (4) 90 cm ³ = 4U + 40 (0)	29,	Volume	of 0.03 M KN	Company of the Compan		dize the	same amount	of H ₂ S gas	to sulphur	
		(1)	80 cm ³	0,000		(2)	120 cm ³			
Space For Rough Work		(3)	60 cm ³			(4)	90 cm ³		(0)	
opace and atough stories	_			Sn	ace For B	lough W	ork			
				- OP		- Barrier				

30. The compound that reacts the fastest with sodium methoxide is

- 31. The pair of compounds having identical shapes for their molecules is

 - (1) BCl₂, CIF₃ (2) SO₂, CO₂
 - (3) CH₄, SF₄

- (4) XeF2, ZnCl2
- Conductivity of a saturated solution of a sparingly soluble salt AB at 298 K is 1.85 × 10⁻⁵ S m⁻¹. Solubility product of the salt AB at 298 K is

Given $\Lambda_m^{\circ}(AB) = 140 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$

 1.32×10^{-12}

(3) 5.7 × 10⁻¹²

- 33. An incorrect statement with respect to S_N1 and S_N2 mechanisms for alkyl halide is
 - Competing reaction for an S_N2 reaction is rearrangement.
 - A weak nucleophile and a protic solvent increases the rate or favours S_N1 reaction. (2)
 - A strong nucleophile in an aprotic solvent increases the rate or favours S_N2 (3) reaction.
 - (4) S_N1 reactions can be catalysed by some Lewis acids.

	(1)	One mole each of benzene and hydrogen when reacted gives 1/3 mole of
		cyclohexane and 2/3 mole unreacted hydrogen.
	(2)	It is easier to hydrogenate benzene when compared to cyclohexene.
	(3)	Cyclohexadiene and cyclohexene cannot be isolated with ease during controlled hydrogenation of benzene.
	(4)	Hydrogenation of benzene to cyclohexane is an endothermic process.
37.		he elements from atomic number 1 to 36, the number of elements which have an electron in their s subshell is
	(1)	7 15-01 x 47.1 (E) (2) 9 11-01 x 75.1 (I)
	(3)	4 = 01 x 2.7 (a) (4) 6 11-01 x 7.2 (f)
18.	The state	ment that is NOT correct is the land land of propert drive transmitted from out to A
	(1)	Van der Waals constant 'a' measures extent of intermolecular attractive forces for real gases.
	(2)	Boyle point depends on the nature of real gas.
	(3)	Compressibility factor measures the deviation of real gas from ideal behaviour.
	(4)	Critical temperature is the lowest temperature at which liquefaction of a gas first occurs.
		Space For Rough Work

10

C

34. Butylated hydroxy toluene as a food additive acts as

(2)

(4)

(2)

(4)

emulsifier

colouring agent

step growth polymer

chain growth polymer

flavouring agent

antioxidant

(1) polyester fibre

(3) copolymer

(1)

(3)

35. Terylene is NOT a

A-1

39.	The correct arrangement for the ions in the increasing order of their radii is							
	(1)	Ca+2, K+, S-2	CH,		(2)	CF, F', S-2 O(D), (C)		
	(3)	Na+, CF, Ca+2			(4)	Na ⁺ , AI ⁺³ , Be ⁺²		

The correct arrangement of the species in the decreasing order of the bond length between carbon and oxygen in them is

(1) CO₂, HCO₂, CO, CO₃⁻² (2) CO, CO₃⁻², CO₂, HCO₂

(3) CO, CO₂, HCO₂, CO₃ (4) CO₃ , HCO₂, CO₂, CO

41. The species that is not hydrolysed in water is

(1) BaO,

(2) CaC,

(3) P₄O₁₀

R + 400 to test 5 0 4 Mg₃N₂ 1 HM 1 H000,H₂ 2 Mg

42. For the properties mentioned, the correct trend for the different species is in

(1) inert pair effect - Al > Ga > In

first ionization enthalpy -B > AI > TI

strength as Lewis acid – $BCl_3 > A/Cl_3 > GaCl_3$

oxidising property – $AI^{+3} > In^{+3} > TI^{+3}$ (4)

A correct statement is

[MnBr₄]⁻² is tetrahedral.

(2) [Ni(NH₃)₆]⁺² is an inner orbital complex.

[Co(NH₁)₆]⁺² is paramagnetic.

[CoBr₂(en)₂] exhibits linkage isomerism.

44.	Iodoform	reaction is answered by all, exce	eptodi ni sa	or arrangement for the los	
	(1)	CH3CHO 17, 7, 70 (0)		CH ₃ - CH ₂ - CH ₂ OH	
	(3)	CH ₃ - CH - CH ₂ - COOH	(4)	CH ₃ - CH ₂ - OH	
		OH		oct armingoment of the spi nd oxygen in them is	
45.	A crystal	line solid XY ₃ has ccp arrangeme	ent for its	element Y. X occupies	
	(1)	33% of tetrahedral voids	(2)	33% of octahedral voids	
	(3)	66% of tetrahedral voids	(4)	66% of octahedral voids	Dogs of T

46.
$$C_0H_5COOH \xrightarrow{1. NH_3} P \xrightarrow{NaOBr} Q \xrightarrow{1. Conc. H_2SO_4} Q \xrightarrow{1. Conc. H_2SO_4} (E)$$

'R' is

Care Company of the Company

- (1) sulphanilamide (2) p-bromo sulphanilamide
- (3) o-bromo sulphanilic acid (4) sulphanilic acid
- 47. The statement that is NOT correct is
 - (1) Carbohydrates are optically active.
 - (2) Lactose has glycosidic linkage between C4 of glucose and C1 of galactose unit.
 - (3) Aldose or ketose sugars in alkaline medium do not isomerise.
 - (4) Penta acetate of glucose does not react with hydroxylamine.

Space For Rough Work

DE.

4L

43. A correct statement is

			ne reaction in Column - II :	
er A. Pamodiumos a			ngas. The number Historica	
(i) Acetic acid		(a)	Stephen	
(ii) Sodium phenate	E	(b)	Friedel-Crafts	
(iii) Methyl cyanide		(c)	HVZ	
(iv) Toluene		(d)	Kolbe's	

- 49. The statement that is NOT correct is blood and a second a second and a second a
 - In solid state PCl_s exists as [PCl_s]⁺[PCl₆]
 - (2) Phosphorous acid on heating disproportionates to give metaphosphoric acid and phosphine. To dome a wear to street sell. There are A dR I see A 40 at The
 - (3) Hypophosphorous acid reduces silver nitrate to silver.
 - (4) Pure phosphine is non-inflammable.
- 50. In which one of the pairs of ion given, there is an ion that forms a co-ordination compound with both aqueous sodium hydroxide and ammonia and an other ion that forms a co-ordination compound only with aqueous sodium hydroxide ?

- (1) Zn^{+2} , Al^{+3} (2) Al^{+3} , Cu^{+2} (3) Pb^{+2} , Cu^{+2} (4) Cu^{+2} , Zn^{+2}
- 51. A crystalline solid X reacts with dil. HCl to liberate a gas Y. Y decolourises acidified KMnO4. When a gas "Z" is slowly passed into an aqueous solution of Y, colloidal sulphur is obtained. X and Z could be, respectively
 - (1) Na₂SO₄, H₂S
- (4) Na₂SO₄, SO₂ (1)
 (4) Na₂SO₃, H₂S (2)
- (3) Na₂S, SO₃

	(1)	Collecte	ors enhance the v	vettability	y of min	ieral parti	icles during froth	flotation.
	(2)	Copper	from its low grad	de ores is	extract	ed by hy	drometallurgy.	
	(3)	A furna	ce lined with Ha	ematite is	s used to	convert	cast iron to wrou	ght iron.
	(4)	In vapor	ur phase refining	, metal s	hould fo	rm a vol	atile compound.	The states
							In solid state PC	(1)
4.							ooint by 0.3 °C. Noon of 'P' in water	
	(1)	60 %					Hypophosphoro	(E)
	(3)	80 %		.alid	(4)	65 %	Pure phosphine	(4)
5.	Cs - Cs	internucle	ear distance is ed	ual to le	ength of	the side	014 × 10 ⁻²³ cm ³ . of the cube correct distance is ne	esponding t
	(1)	4.3 Å			(2)	4.5 Å	Za*2, AF	(1)
	(3)	4.4 Å			(4)	4 Å		
6.	For Cr ₂ C	0 ₇ + 14H	+ 6e ⁻ → 2Cr ⁺	3 + 7H ₂ (Ot E° =	1.33 V	At $[Cr_2O_7^2] = 4$	5 millimol
							s nearly equal to	
	(1)		Na,50,, 50,			4		
	(3)	2	$\mathrm{Na}_2\mathrm{SO}_2 \to_2\mathrm{S}$		(4)	5	Na ₂ S, SO ₃	

14

52. An aromatic compound 'A' (C₇H₆N) on reacting with NaNO₂/HCl at 0 °C forms benzyl alcohol and nitrogen gas. The number of isomers possible for the compound 'A' is

anim Debbanii (4)) 3

(2) 6

(ii) Sodium phenate

(iv) Tolucac

C

(1) 7

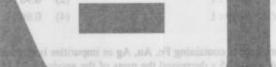
(3) 5

A-1

53. The statement that is NOT correct is

57.	1.78 g of	an optically active L-a	mino acid (A) is tre	ated with NaNO2/HC/	at 0 °C. 448 cm ³
		en was at STP is evolve ne molar mass of the pr		otein has 0.25% of th	is amino acid by
	(1)	34,500 g mol ⁻¹	(2)	35,600 g mol ⁻¹	
	(3)	36,500 g mol ⁻¹	(4)	35,400 g mol ⁻¹	
58.		a mixture of BaO and entage of calcium oxide			react completely.
	(Given:	molar mass of BaO = 1	53)		
	(1)	55.1	(2)	47.4	
	(3)	52.6	(4)	44.9	
59.		of heats liberated at water gas obtained from		ombustion of one kg	of coke and by
	(Assume	coke to be 100% carbo	n.)		
	(Given e	enthalpies of combusti	on of CO2, CO a	nd H ₂ as 393.5 kJ,	285 kJ, 285 kJ
	respectiv	ely all at 298 K.)			
	(1)	0.69:1	(2)	0.96:1	
	(3)	0.79:1	(4)	0.86:1	
60.	140 A fo	opper containing Fe, A or 482.5 s decreased the oy 22.011 g. Percentage	e mass of the anode	by 22.26 g and incre	
	(Given r	nolar mass Fe = 55.5 g	mol-1, molar mass	$Cu = 63.54 \text{ g mol}^{-1}$	
	(1)	0.85	(2)	0.90	
	(3)	0.95	(4)	0.97	

- 2.4. 1.78 g of an optically series L-amino acid (A) is insated with NaNO_SEC at 0.00. 448 cm² of nanogen was at STP is available. A sample of proxim has 0.25% of this amino acid by mass. The moles mass of this protein is
 - (1) 34,500 g mol⁻¹
 - From a 000-26 (1)


- 1- Inns u (VIII. P) (24)
- 10 g of a mixture of 8aO and CaO requires 100 cm² of 2.5 M HCl to react completely.
 The percentage of calcium exide in the mixture is approximately.

(Given molar mass of BaO = 153)

Senated at 25% K from the combustion of the color and by a color and by a obtained from kg of color in to 100% crebon.)

(Give Paries of combustion of CO₂, CO and H₂ a CO₂, S kJ, 285 kJ respective at 298 KJ

grow occasions Fo. Au. Ag or impurities in call only reflic 6 a decreased the mass of the acode of the said increat a Percentage of iron in impure

Gives molar mass Fe = 55.5 g mol 1, molar mass Cu = 63.54 g mol 1)

- (1) 0,85
- (5)

000 00

Space For Horgh Work